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Data and Text Mining:
ICT2 Credits, Supporting material

20 credits

8 credits Nada LavraCc and Petra Kralj Novak
4 credits Bojan Cestnik
8 credits Dunja Mladenic

Supporting material on videolectures.net:
Seminar: Al for Industry and Society, Ljubljana 2020

http://videolectures.net/AlindustrySeminar2019/

Marko Robnik Sikonja: Artificial Intelligence: Techniques, Trends
and Applications

Nada Lavrac: Data Science, Machine Learning and Big Data:
Current trends

Blaz Zupan: Data Science with the OrangeToolbox
Dunja Mladenic¢: Text Mining Applications for Industry


http://videolectures.net/AIindustrySeminar2019/
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Data Mining: MSc Credits and Coursework
for Data mining part

Requirements for Data Mining part by Nada Lavrac
and Petra Kralj Novak (8 ECTS credits):

« Attending lectures
« Attending practical exercises

— Theory exercises and hands-on (intro to Orange DM
toolbox by dr. Petra Kralj Novak)

« Oral exam (40%)
« Seminar (60%):
— Data analysis of your own data (e.g., using Orange for
guestionnaire data analysis)

— .... own Initiatives are welcome ...



Data Mining: MSc Credits and coursework

Exam: Oral exam - Theory
Seminar: topic selection + results presentation

* One hour available for seminar topic discussion — one page
written proposal defining the task and the selected dataset

* Deliver written report + electronic copy (4 pages in
Information Society paper format, instructions on the web)

— Report on data analysis of own data needs to follow the
CRISP-DM methodology

— Presentation of your seminar results (15 minutes each: 10
minutes presentation + 5 minutes discussion)



Course Qutline

l. Introduction 1. Predictive DM
Data Mining and KDD process Regression
Introduction to Data Mining

« Data Mining platforms

I\VV. Descriptive DM

Il. Predictive DM « Predictive vs. descriptive
« Decision Tree learning induction

. Bayesian classifier * Subgroup discovery

« Classification rule learning * Association rule learning

« Classifier evaluation « Hierarchical clustering



Part |. Introduction

Data Mining and the KDD process
ntroduction to Data Mining
Data Mining platforms




Machine Learning and Data Mining

« Machine Learning (ML) — computer
algorithms/machines that learn predictive
models from class-labeled data

« Data Mining (DM) — extraction of useful
information from data: discovering
relationships and patterns that have not
previously been known, and use of ML
techniques applied to solving real-life data
analysis problems

« Knowledge discovery in databases (KDD) —
the process of knowledge discovery



Data Mining and KDD

« Buzzword since 1996

« KDD is defined as “the process of identifying
valid, novel, potentially useful and ultimately
understandable models/patterns in data.” *

« Data Mining (DM) is the key step in the KDD
process, performed by using data mining
technigues for extracting models or interesting
patterns from the data.

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting
Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11

10



11

KDD Process: CRISP-DM

KDD process of discovering useful knowledge from data

Pre- Trans- Data Interpretation/
. processmg. fcr‘matlon Mining ~—— Evaluation N

Preprocessed | Transformed Patterns KﬂﬂWlEdgE
Data Data

>

« KDD process involves several phases:
* data preparation
 data mining (machine learning, statistics)
 evaluation and use of discovered patterns

« Data mining Is the key step, but represents only
15%-25% of the entire KDD process



Big Data

« Big Data — Buzzword since 2008 (special
Issue of Nature on Big Data)

— data and techniques for dealing with very
large volumes of data, possibly dynamic
data streams

— requiring large data storage resources,
special algorithms for parallel computing
architectures.

12



The 4 Vs of Big Data
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It's estimated that

2.5 QUINTILLION BYTES

[ 23 TRILLION GIGABYTES |
of data are created each day

40 ZETTABYTES
(43 TRILLION GIGABYTES |

of data will be created by
2020, an increase of 300
times from 2005

The
FOURV’s
of Big
Data

From traffic patterns and music downloads

2020

6 BILLION
PEOPLE

have cell
phones

Most companies in the
U.S. have at least

100 TERABYTES

[ 100,000 GIGABYTES |
of data stored

data, and how can these

WORLD POPULATION: 7 BILLION tor, IBM
four dimensions: Volume,

ety and Veracity

scientists

Modern cars have close to

100 SENSORS

that monitor items such as
fuel level and tire pressure

The New York Stock Exchange
captures

1718 OF TRADE
INFORMATION

during each trading session

omer needs, optimize operatic

nfrastructure, and find new sources of

Velocity

ANALYSIS OF
STREAMING DATA

By 2015

4.4 MILLION IT JOBS

By 2016, it is projected
there will be

18.9 BILLION
NETWORK
CONNECTIONS

YYY YYYrYYYY
e LY TTTTXTIT

As of 2011, the global size of
data in healthcare was

By 2014, it's anticipated
there will be

es,t-imated to be 420 MILLION
150 EXABYTES WEARABLE, WIRELESS
[ 161 BILLION GIGABYTES | HEALTH MONITORS

4 BILLION+
HOURS OF VIDEOD

are watched on
YouTube each month

You
LTube )

400 MILLION TWEETS

are sent per day by about 200
million monthly active users

30 BILLION
PIECES OF CONTENT

are shared on Facebook

every month
Qoo

Poor data quality costs the US
economy around

1 IN 3 BUSINESS

LEADERS

it tr $3.1 TRILLION A YEAR
don’t trust the information $3.1 TRILLION A YEAR
they use to make decisions .

Veracity

UNCERTAINTY
OF DATA

in one survey were unsure of
how much of their data was
inaccurate

Sources: McKinsey Global Institute, Twitter, Cisco, Gartner, EMC, SAS, IBM, MEPTEC, QAS




Data Science

« Data Science — buzzword since 2012 when
Harvard Business Review called it "The
Sexiest Job of the 21st Century"

— an Interdisciplinary field that uses scientific
methods, processes, algorithms and
systems to extract knowledge and insights
from data in various forms, both structured
and unstructured, similar to data mining.

— used interchangeably with earlier concepts
like business analytics, business
Intelligence, predictive modeling, and
statistics.

14
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Machine Learning and Data Mining

data

Person Age Spect. presc. Astigm. Tear prod. Lenses knOWIGdge discovery
o1 17 myope no reduced NONE

02 23 myope no normal SOFT from data
03 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE 1 1
014 35 hypermetrope no normal SOFT g g
015 43 hypermetrope yes reduced NONE Data Mlnlng
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019-023 ... model, patterns, ...
024 56 hypermetrope yes normal NONE
data

Given: class labeled data
Find: a classification model, a set of interesting patterns



Machine Learning and Data Mining

data
Person Age Spect. presc. Astigm. Tear prod. Lenses knOWIGdge discovery
o1 17 myope no reduced NONE
02 23 myope no normal SOFT from data
03 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE 1 1
014 35 hypermetrope no normal SOFT g g
015 43 hypermetrope yes reduced NONE Data Mlnlng
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019-023 .
024 56 hypermetrope yes normal NONE
data

Given: class labeled data
Find: a classification model, a set of interesting patterns

new unclassified instance |'

classified instance

black box classifier

no explanation

>

model, patterns, ...

symbolic model
symbolic patterns” ,5\

explanation i b,

L.ab

16



Why learn and use black-box models

Given: the learned classification model
(e.g, a linear classifier, a deep neural network, ...)

Find: - the class label for a new unlabeled instance

new unclassified instance N, classified instance

Advantages:
- best classification results in image recognition
and other complex classification tasks

Drawbacks:
- poor interpretability of results
- can not be used for pattern analysis



Why learn and use symbolic models

Given: the learned classification model
(a decision tree or a set of rules)

Find: - the class label for a new unlabeled instance

new unclassified instance classified instance

Advantages:
- use the model for the explanation of classifications of
new data instances
- use the discovered patterns for data exploration

Drawbacks:
- lower accuracy than deep NNs
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Simplified example: Learning a classification
model from contact lens data

Person Age Spect. presc. Astigm. | Tear prod. Lenses
Ol 17 myope no reduced NONE
02 23 myope no normal SOFT
O3 22 myope yes reduced NONE
O4 27 myope yes normal HARD
O5 19 hypermetrope no reduced NONE

06-013 .
O14 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
O17 54 myope no reduced NONE
018 62 myope no normal NONE

019-023

024 56 hypermetrope yes normal NONE



Pattern discovery in Contact lens data

Person Age Spect. presc. | Astigm. Tear prod.  Lenses
Ol 17 myope no reduced NONE
02 23 myope no normal SOFT
O3 22 myope yes reduced NONE
O4 27 myope yes normal HARD
O5 19 hypermetrope no reduced NONE

06-013 .

Oo14 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019-023 .
024 56 hypermetrope yes normal NONE

PATTERN

Rule:

IF
Tear prod. =
reduced

THEN
Lenses =
NONE



Learning a classification model from
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contact lens data

Person Age Spect. presc.| Astigm. Tear prod. Lenses
01 young myope no reduced NONE
02 young myope no normal SOFT
03 young myope yes reduced NONE
o4 young myope yes normal HARD
05 young | hypermetrope no reduced NONE

06-013
014  ore-presbyc hypermetrope no normal SOFT
015 ore-presbyc hypermetrope yes reduced NONE
016 ore-presbyc hypermetrope yes normal NONE
017 presbyopic myope no reduced NONE
018 preshyopic myope no normal NONE

019-023
024  preshyopic hypermetrope yes normal NONE

Data Mining

reduced /

NONE

N:)rmal

no/

SOFT spect. pre.

myope/ \hypermetrope

HARD NONE




Decision tree classification model
learned from contact lens data

nodes: attributes
arcs: values of attributes
reduced \

normal leaves: classes
NONE astigmatism

I'ID/ yes

SOFT

spect. pre.

myope / \hypermetrupe

HARD NONE




Learning a decision tree classification ~
model

reduced‘//’ nonnal
NONE
ni//

SOFT

yes

spect. pre.

myope/ \hypermetrope

HARD NONE

Using Gain(S,A) heuristic for determining the most
Informative attribute
Gain(S,A)=E(S)- > p,-E(S,)

veValues( AT)
Gain(S,A) estimates the reduction of entropy of set S after

splitting into subsets based on values of attribute A



Heuristics for estimating the
Informativity of attributes and features

Search heuristics: Which attribute to test at each node in the tree ?
The attribute that is most useful for classifying examples.

Define a statistical property, called information gain, measuring how
well a given attribute separates the training examples w.r.t their target
classification.

First define a measure commonly used in information theory, called
entropy, to characterize the (im)purity of an arbitrary collection of
examples, and Informativity of an attribute merimois measured as
reduction of entropy of a training set

Entropy: E(S) = - p. log,p, - p.log,p.
Most informative attribute:
— Select S
— Select A to split S into S1,S2, ...Sv
— Select A, which maximizes info. Gain
max Gain(S,A)
Gain(S,A)=E(S)- >’ S,

veValues(A) | S |

-E@S)

24



Learning a classification model
from contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses
01 17 myope no reduced NONE
02 23 myope no normal SOFT
03 22 myope yes reduced NONE
04 27 myope yes normal HARD
05 19 hypermetrope no reduced NONE

06-013

014 35 hypermetrope no normal SOFT
015 43 hypermetrope yes reduced NONE
016 39 hypermetrope yes normal NONE
017 54 myope no reduced NONE
018 62 myope no normal NONE
019-023
024 56 hypermetrope yes normal NONE

lenses=NONE « tear production=red

Data Mining
tear prod.
reduced/ Ni)rmal
NONE astigmatism

no/

SOFT

myope /

HARD

spect. pre.

i hypermetr:

lenses=NONE « tear production=normal AND astigmatism=yes AND
spect. pre.=hypermetrope

lenses=SOFT <« tear production=normal AND astigmatism=no

lenses=HARD <« tear production=normal AND astigmatism=yes AND

spect. pre.=myope
lenses=NONE «



Classification rules model learned
from contact lens data

lenses=NONE « tear production=reduced
lenses=NONE « tear production=normal AND
astigmatism=yes AND
spect. pre.=hypermetrope
lenses=SOFT <« tear production=normal AND
astigmatism=no
lenses=HARD <« tear production=normal AND
astigmatism=yes AND
spect. pre.=myope
lenses=NONE «



Learning from Unlabeled Data

Person Age Spect. presc. Astigm. Tear prod.\ Lenses /
o1 17 myope no reduced
02 23 myope no normal
03 22 myope yes reduced
04 27 myope yes normal
05 19 hypermetrope no reduced

06-013 .
014 35 hypermetrope no normal
015 43 hypermetrope yes reduced
016 39 hypermetrope yes normal
017 54 myope no reduced
018 62 myope no normal

019-023 .
024 56 hypermetrope yes normal

Unlabeled data - clustering: grouping of similar instances
- association rule learning

27



Learning from Numeric Class Data

Person Age Spect. presc.| Astigm. Tear prod. LensPrice
o1 17 myope no reduced 0
02 23 myope no normal 8
03 22 myope yes reduced 0
04 27 myope yes normal 5
05 19 hypermetrope no reduced 0

06-013
014 35 hypermetrope no normal 5
015 43 hypermetrope yes reduced 0
016 39 hypermetrope yes normal 0
017 54 myope no reduced 0
018 62 myope no normal 0

019-023
024 56 hypermetrope yes normal 0

Numeric class values — regression analysis
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Task reformulation: Binary Class Values

Person Age Spect. presc. Astigm. Tear prod.. Lenses
o1 17 myope no reduced NO
02 23 myope no normal YES
03 22 myope yes reduced NO
O4 27 myope yes normal YES
05 19 hypermetrope no reduced NO

06-013
014 35 hypermetrope no normal YES
015 43 hypermetrope yes reduced NO
016 39 hypermetrope yes normal NO
017 54 myope no reduced NO
018 62 myope no normal NO

019-023 .
024 56 hypermetrope yes normal NO

Binary classes (positive vs. negative examples of Target class)
- for Concept learning — classification and class description
- for Subgroup discovery — exploring patterns
characterizing groups of instances of target class



Task reformulation: Binary Class and
Feature Values

Person Young Myope Astigm. euced tea_ Lenses
o1 1 1 0 1 NO
02 1 1 0 0 YES
03 1 1 1 1 NO
04 1 1 1 0 YES
05 1 0 0 1 NO

06-013
014 0 0 0 0 YES
015 0 0 1 1 NO
016 0 0 1 0 NO
017 0 1 0 1 NO
018 0 1 0 0 NO

019-023 .
024 0 0 1 0 NO

Binary features and class values



First Generation Data Mining

* First machine learning algorithms for

— Decision tree and rule learning in 1970s and early 1980s
by Quinlan, Michalski et al., Breiman et al., ...

« Characterized by
— Learning from data stored in a single data table
— Relatively small set of instances and attributes

 Lots of ML research followed in 1980s

— Numerous conferences ICML, ECML, ... and ML
sessions at Al conferences [JCAI, ECAI, AAAI, ...

— Extended set of learning tasks and algorithms
addressed



Second Generation Data Mining

* Developed since 1990s:

— Focused on data mining tasks characterized by large
datasets described by large numbers of attributes

— Industrial standard: CRISP-DM methodology (1997)




Second Generation Data Mining

* Developed since 1990s:

— Focused on data mining tasks characterized by large
datasets described by large numbers of attributes

— Industrial standard: CRISP-DM methodology (1997)

e -

Pre- Data Interpretation/

. Trans- Ja
=_  processing formation Mining Evaluation ——
T g i L SR RN N
e I (——  — A =Ry ] e— g

Preprocessed | Transformed Patterns Knowledge
Data Data

and knowledge discovery: KDD, PKDD, ...

— New learning tasks and efficient learning algorithms:

« Learning predictive models: Bayesian network learning,,
relational data mining, statistical relational learning, SVMs, ...

» Learning descriptive patterns: association rule learning,
subgroup discovery, ...



MEDIANA - analysis of media research data

Pre Trans- Data lnterpretatlom‘
rocessm fcr‘mation Mmmg Eva]uauon
Target Prepcessed Transfurmed Patterns Knowledge
Data Data Data
e .‘

* Questionnaires about journal/magazine reading, watching
of TV programs and listening of radio programs, about 1200
guestions. Yearly publication: frequency of
reading/listening/watching, distribution w.r.t. Sex, Age,
Education, Buying power,..

« Data about 8000 questionnaires, covering lifestyle, spare
time activities, personal viewpoints,
reading/listening/watching of media (yes/no/how much),
Interest for specific topics in media, social status

e good quality, “clean” data

» table of n-tuples (rows: individuals, columns: attributes, Iin
classification tasks selected class)



MEDIANA — media research pilot study

Pre- Trans-

= processing formation Evaluation N
Target I Prepﬂcessed ITransfurmedI Patterns I Knowledge

Data Data Data

»

« Patterns uncovering regularities concerning:

— Which other journals/magazines are read by readers of
a particular journal/magazine ?

— What are the properties of individuals that are
consumers of a particular media offer ?

— Which properties are distinctive for readers of different
journals ?

* Induced models: description (association rules, clusters)
and classification (decision trees, classification rules)




Simplified association rules

Finding profiles of readers of the Delo daily
newspaper
1. reads_Marketing_magazine 116 >
reads_Delo 95 (0.82)
2. reads_Finance 223 & reads_Delo 180 (0.81)
3. reads_Views 201 & reads Delo 157 (0.78)
4. reads _Money 197 2 reads Delo 150 (0.76)
5. reads Vip 181 & reads Delo 134 (0.74)

Interpretation: Most readers of Marketing magazine,
Finance, Views, Money and Vip read also Delo.



Simplified association rules

1. reads_Sara 332 = reads_Slovenian_news 211 (0.64)
2. reads _Love_stories 283 >

reads_Slovenian_news 174 (0.61)
3. reads_Dolenjska_news 520

reads_Slovenian_news 310 (0.6)
4. reads_ Omama 154 > reads_Slovenian_news 90 (0.58)
5. reads_Workers_news 177 >

reads_Slovenian_news 102 (0.58)

Most of the readers of Sara, Love stories, Dolenjska
news, Omama in Workers news read also
Slovenian news.



Simplified association rules

1. reads_Sports _news 303 >
reads_Slovenian_shareholders _magazine 164 (0.54)

2. reads_Sports_news 303 >
reads_Salomon_advertisemens 155 (0.51)

3. reads_Sports_news 303 >
reads_Lady 152 (0.5)

More than half of readers of Sports news reads also
Slovenian shareholders magazine, Solomon
advertisements and Lady.



Second Generation Data Mining
Platforms

Orange, WEKA, KNIME, RapidMiner, ...

— Include numerous data mining algorithms

— enable data and model visualization

— like Orange, Taverna, WEKA, KNIME, RapidMiner,
also enable complex workflow construction
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Data Mining Workflows for
Open Data Science

Workflows are executable visual representations of
procedures

— divided into smaller chunks of code (components)
— organized as sequences of connected components.
Suitable for representing complex scientific pipelines
— by explicitly modeling dependencies of components

Building scientific workflows consists of simple operations on
workflow elements (drag, drop, connect), suitable for non-
experts

r1—LL

o {7
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Third Generation Data Mining

« Developed since 2010s:
— Focused on big data analytics
— Addressing complex data mining tasks and scenarios

— New conferences on data science and big data
analytics; e.g., IEEE Big Data, Complex networks, ...

— New learning tasks and efficient learning algorithms:
« Analysis of dynamic data streams, Network analysis, Text
mining, Semantic data analysis, ...
— Lots of emphasis on automated data transformation

* Propositionalization of relational data, of heterogeneous
information networks, ...

« Embedding of texts, networks, knowledge graphs, entities

(features), ... is highly popular in the last few years
-

Pre- Trans- Data Interpretation/

= processing formation Mining Evaluation N7
1 — =y l::> — W12

Preprocessed | Transformed Patterns Knowledge
Data Data

41



Propositionalization:

Data transformation for Relational Data Mining

customer
1D |Zip So In_ |A|Cl [Re
/ €X |5t |come|ge|yh 5P
3478|3677 m. 60-70|32|me [nr
3479|43666/f [ma|80-90[45(nm|re
/ order
%stomer %der %ore Delivery [Paymt
\ Mode |Mode
3478 2140267(12 \regula.t cash
3478 3446778|12 express |check
3478 472838617 regular  |check
3479 3233444|17 xpress  [credit
3479 347588612 gular  |credit
store

Location

Store ID|[Size [Type

12
17

PR
small |franchige

large [indep

city
rural

Relational representation of customers, orders and stores.

fl | f2 | £3 |4 | £5 | f6 fn
gl (oo |11 j1rfo 01401 (1
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gg| o (111 (opofry1rjoy0|n0f1
I 5 1 O A I A A
gh| 1 (110 foqj1fo 1|10l
gl o (o1 1 (ojofoprjoyoj0fl
4 A I 1 A I A I B
L0 I A 1 A I A RV A
g1 (o111 jof1rpojoy1j0f1

Step 1

Propositionalization

Step 2

Data Mining
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model, patterns, ...



Bag-of-Words Data Transformation for
Text mining

Document Wordl Word?2 WordN Class
Step1 di 1 1 0 1 NO
d2 1 1 0 0 YES
d3 1 1 1 1 NO
. d4 1 1 1 0 YES
BoW vector construction 45 1 0 0 1 .
d6-d13
d14 0 0 0 0 YES
dis 0 0 1 1 NO
di6 0 0 1 0 NO
1. BoW features 417 0 1 0 1 NO
construction pam |
2. Table of BoW vectors d24 0 0 1 0 o
construction
Document Wordl Word2 WordN Class
di 1 1 0 1 NO
d2 1 1 0 0 YES Stepz
d3 1 1 1 1 NO
d4 1 1 1 0 YES
d5 1 0 0 1 NO o
d6-d13 Data |\/||n|ng
di4 0 0 0 0 YES
dis 0 0 1 1 NO
die 0 0 1 0 NO
di7 0 1 0 1 NO
di8 0 1 0 0 NO
d19-d23
o4 5 5 ; 5 o model, patterns, clusters,



Text mining:
Words/terms as binary features

Document Wordl Word?2 WordN Class
dl 1 1 0 1 NO
d2 1 1 0 0) YES
d3 1 1 1 1 NO
d4 1 1 1 0 YES
d5 1 0 0 1 NO

d6-d13
d14 0 0 0 0 YES
di5 0 0 1 1 NO
d16 0) 0 1 0 NO
d17 0) 1 0 1 NO
d18 0 1 0 0 NO

d19-d23
d24 0 0 1 0 NO

Instances = documents
Words and terms = Binary features



Bag-of-Words document

representation

|I"'- e a—— -
Journal of Artificial Intellipence
TATR is arefereed journal, cover £as
of Artificial Intelli is distributed

e MtamWnlmn&‘\_—

of the jowrndl is also published by IMorgan
Eaufrnan....

free of charge oy

L R s == i == R - T VL R

learning
journal
intelligence
text

agent

internet
webwatcher

perls

volume




Word weighting for BoW document
representation

 In bag-of-words representation each word is represented
as a separate variable having numeric weight.

* The most popular weighting schema is normalized word
frequency TFIDF:
N

tfidf (w) = tf. log( ” (W))

— Tf(w) — term frequency (number of word occurrences in a

document)
— Df(w) — document ffequency (number of dociyments containing the
word)
— N — number of all documents
— Tfidf(w) — relative importance of the word in the document
The word is more important if it appears The word is more important if it

several times in a target document appears in less documents
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Embeddings-based Data Transformations

« Embedding networks,

knowledge graphs, relational data,

entities (features), texts ...

 Transforming data by projecting individual data instances into
vectors (rows of a data table) — dense data representation

» Weights correspond to
neural rpetwork

Softmax
Layer 3

Layer 2

The gold

weights in the embedding layer of a

LM pre-training Classifier fine-tuning



Embedding-based Data Transformation
for Text mining

» Corpus embedding, Document embedding, Sentence embedding,
word embedding, ...

* Representations of word meaning obtained from corpus statistics

- Spatial relationships correspond to linguistic relationships

disambiguation
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Third Generation Data Mining Platforms

 Oranged4WS (Podpecan et al. 2009), ClowdFlows (Kranjc et
al. 2012) and TextFlows (Perovsek et al. 2016)

— are service oriented (DM algorithms as web services)
— user-friendly HCI: canvas for workflow construction

— Include functionality of standard data mining platforms
« WEKA algorithms, implemented as Web services

— Include new functionality
* relational data mining
e semantic data mining
* NLP processing and text mining

— enable simplified construction of Web services from
available algorithms

— ClowdFlows and TextFlows run in a browser — enables
data mining, workflow construction and sharing on the web
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ClowdFlows platform

E‘"bLoc al services
"Ll Big data

» Large algorithm repository

— Relational data mining i

— All Orange algorithms

— WEKA algorithms as web services Ao
— Data and results visualization o

Finte gers

— Text analysis SO

BT MysoL

— Social network analysis SOy

L_l Moise Handling

B Objects

— Analysis of big data streams oo
- Large workflow repository 75 e

B Strings

— Enables access to our

"L_l Visual performance evaluation {(WiperChart

technology heritage

Import webservice



ClowdFlows platform

» Large repository of algorithms
» Large repository of workflows

str &\ '-'.t__t J48
Display Features J48
@ (]
I S
L ) L CLA, e | Iy [t t
MySQL Connec t o o arf = & ins Print Tree Dlsptay Tree
© Database To RSD pos rul Arff to Weka Data Build Classifier © ©
© neg Table @
on m cxt ®
set
Database Context
e RSD

Example workflow:
Propositionalization with RSD
available in ClowdFlows at
http://clowdflows.org/workflow/611/



TextFlows

 Motivation:

— Develop an online text mining platform for
composition, execution and sharing of text mining
workflows

« TextFlows platform — fork of ClowdFlows.org:

— Specialized on text mining

— Web-based user interface

— Visual programming

— Big roster of existing workflow (mostly text mining)
components

— Cloud-based service-oriented architecture



“Big Data” Use Case

« Real-time analysis of big data streams

« Example: semantic graph construction from news
streams. http://clowdflows.org/workflow/1729/.

2 e 3
url url ; txt str tri tri - tri st & & st tri
TLDR w _/\

RSS Reader Summarize news Triplet Extraction WordNet lemmatizer  Sliding Window Streaming triplet
article on triplets ~ graph

« Example: news monitoring by graph s
visualization (graph of CNN RSS feeds) -~~~ . .

http://clowdflows.org/streams/data/31/1



Part |I. Summary

KDD is the overall process of discovering useful

knowledge in data

— many steps including data preparation, cleaning,
transformation, pre-processing

Data Mining is the data analysis phase in KDD

— DM takes only 15%-25% of the effort of the overall KDD
process

— employing techniques from machine learning and statistics

Predictive and descriptive induction have different
goals: classifier vs. pattern discovery

Many application areas, many powerful tools
available
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Summary of types of learning tasks

Supervised learning vs. Unsupervised learning = Learning from
Labeled vs. Learning from Unlabeled data, i.e. depending whether
the data includes class labels for a predefined target class attribute or
not.

Prediction (classification, predictive modeling, classifier learning) -
learning classifiers from class labeled data, e.g., decision tree learning

Concept learning — learning classifiers for a preselected target class
from binary labeled data

Regression — |learning classifiers from data with numeric class labels

Multi-label prediction - learning classifiers from data labeled by several
target class attributes

Description (descriptive pattern mining) - learning individual
rules/patterns, describing properties of parts of the data set, e.qg.
association rule learning

Subgroup discovery — combining supervised learning from class
labeled data and descriptive pattern mining

Clustering — grouping of unlabeled data, based on data similarity



Technical paper outline

Book: Foundations of Rule Learning

Publisher: Springer, 2012

Authors: J. Fuernkranz, D. Gamberger and N. Lavrac
Chapter: Machine Learning and Data Mining

1.1 Introduction ... ... ... .. ... ... ... . . 1
1.2 Historical background . . .. ........ .. ... ... . ... 3
1.3 Knowledge discovery process and standardization .. 4
1.4 Terminology and categorization of learning tasks . .. . 6
1.5 Predictive data mining: Induction of models .. ....... 8
1.6 Descriptive data mining: Induction of patterns . . .. .. 13
1.7 Relationaldatamining . .. ..................... 15

1.8 Conclusion . . ........ .. . . e 17
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Course Qutline

l. Introduction

Data Mining and KDD process
Introduction to Data Mining

« Data Mining platforms

ll. Predictive DM

« Decision Tree learning

« Bayesian classifier

« Classification rule learning
« Classifier evaluation

lll. Predictive DM
« Regression

I\VV. Descriptive DM

« Predictive vs. descriptive
iInduction

« Subgroup discovery
« Association rule learning
« Hierarchical clustering

o7



Part Il. Predictive DM techniques

j|> Decision tree learning
« Bayesian Classifier

* Rule learning
« Evaluation
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Predictive DM - Classification

« data are objects, characterized with attributes -
they belong to different classes (discrete labels)

 given objects described with attribute values,
iInduce a model to predict different classes

e decision trees, If-then rules, discriminant
analysis, ...

959
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Predictive DM - classification
formulated as a machine learning task

« Given a set of labeled training examples (n-tuples of
attribute values, labeled by class name)

Al A2 A3 Class
examplel v, Vi Vi 3 C;
example2  v,, Vs 5 Vs 3 C,

« Performing generalization from examples (induction)

* Find a hypothesis (a decision tree or classification rules)
which explains the training examples, e.g. decision trees
or classification rules of the form:

IF (Ai=V;) & (A)=V,) & ... THEN Class = C,
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Decision Tree Learning

Person Age Spect. presc.| Astigm. Tear prod. Lenses
01 young myope no reduced NONE
02 young myope no normal SOFT
03 young myope yes reduced NONE
o4 young myope yes normal HARD
05 young | hypermetrope no reduced NONE

06-013
014  ore-presbyc hypermetrope no normal SOFT
015 ore-presbyc hypermetrope yes reduced NONE
016 ore-presbyc hypermetrope yes normal NONE
017 presbyopic myope no reduced NONE
018 preshyopic myope no normal NONE

019-023
024  preshyopic hypermetrope yes normal NONE

Data Mining

reduced /

NONE

N:)rmal

no/

SOFT spect. pre.

myope/ \hypermetrope

HARD NONE




Decision Tree classifier

tear prod.

reduced normal

i

NONE

yes

n{:}/

SOFT

spect. pre.

lnynpi//f \\\Typenneuope

HARD NONE




Decision tree learning algorithm

* |ID3 (Quinlan 1979), CART (Breiman et al. 1984), C4.5,
J48 in WEKA, ...

— create the root node of the tree

— If all examples from S belong to the same class Cj
* then label the root with Cj

— else

e select the ‘most informative’ attribute A with values
vl,v2, ... vn

« divide training set S into S1,... , Sn accordjng to
values v1,...,vn

* recursively build sub-trees

AR
T1,...,Tn for $1,...,Sn @ @
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Decision tree search heuristics

« Central choice in decision tree algorithms: Which
attribute to test at each node in the tree ? The
attribute that is most useful for classifying
examples.

« Define a statistical property, called information
gain, measuring how well a given attribute
separates the training examples w.r.t their target
classification.

* First define a measure commonly used in
Information theory, called entropy, to characterize

the (im)purity of an arbitrary collection of examples.

64



Entropy

* S -training set, C,,...,Cy - classes

* Entropy E(S) — measure of the impurity of
training set S

N
E(S) = —Z p..10g, p.  P.- prior probability of class C,
—1

(relative frequency of C_ in S)

« Entropy In binary classification problems

E(S) = - p.log,p, - p.log,p.
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Entropy

E(S) = - p.log,p. - p.log,p.
The entropy function relative to a Boolean

classification, as the proportion p, of positive
examples varies between 0 and 1

0o /\

08 / N\

/ AN
@ o0 / \
Zos 1/ A\
£ 04 / \
0a 1] \
o1 1 \
o

0 0,2 0,4 0.6 0,8 1 Pt
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Entropy — why ?

Entropy E(S) = expected amount of information (in
bits) needed to assign a class to a randomly drawn
object in S (under the optimal, shortest-length
code)

Why ?
Information theory: optimal length code assigns
- log,p bits to a message having probability p

So, In binary classification problems, the expected
number of bits to encode + or — of a random
member of S Is:

p.(-log,p,)+ p.(-log,p.) =-p,log,p, - p_log,p.
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Binary classification problem:
Survey data

Education Marital Status Sex  Has Children | Approved
primary single male no no
primary single male ves no
primary married male no yes

university divorced female no yes

university married female yes yes
secondary single male no no
university single female no yes
secondary divorced female no yes
secondary single female yes yes
secondary married male yes yes
primary married female no yes
secondary divorced male yes no
university divorced female yes no
secondary divorced male no
single
0.600
5.0
Sex
male /hﬂgle
1.000 .
3.0




Entropy — example calculation

Training set S: 14 examples (9 pos., 5 neq.)
Notation: S = [9+, 5-]

E(S) = - p.log,p. - p.log,p.
Computing entropy, if probability is estimated by
relative frequency

S0 181 (IS.] 15|
E(S) = | "2+ jog 2 | 1221 jog 2=
) (|S| °g|8|j (|5| ongJ

E([9+,5-]) = - (9/14) log,(9/14) - (5/14) log,(5/14)
= 0.940
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Survey data: Entropy

* E(S)=-p,log,p,-p.log,p.
« E(9+,5-) = -(9/14) log,(9/14) - (5/14) log,(5/14) = 0.940

/Singk/
Marital status ?

married— (53 55 210,211} [4+,0-] E=0

{ele2,e6,e7,e9} [2+, 3-] E=0.970

{e4,e8,el2,e13,el14} [3+, 2-] E=0.970
[3+,4-] E=0.985

sle— 16+ 1-] E=0592

o [6+,2-] E=0.811

Has children- yes— 3+ 3-] E=1.00
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Information gain
search heuristic

« Information gain measure is aimed to minimize the

number of tests needed for the classification of a new
object
« Gain(S,A) — expected reduction in entropy of S due to

sorting on A

Gain(S,A)=E(S)- >’ lSVl-E(SV)

veValues(A) | S |

« Most informative attribute: max Gain(S,A)




Information gain
search heuristic

 Which attribute is more informative, A1 or A2 ?

[9+,5-], E=0.94 [9+,5-], E=0.94

/N /N

[6+, 2-] [3+,3-] [9+, 0] [0+, 5-]
E=0.811 E=1.00 E=0.0 E=0.0

 Gain(S,A1) =0.94 - (8/14 x 0.811 + 6/14 x 1.00) = 0.048
« Gain(5,A2)=0.94-0=0.94 A2 has max Gain



Survey data: Information gain

Gain(S,A)=E(S)- > S,

veValues(A) | S |

-E@S,)

« Values(Has children) = {no, yes}

/
Has children

? Yes—— [3+,3-] E=1.00
— S =[9+,5-], E(S) =0.940

[6+,2-] E=0.811

- S, =[6+,2-], E(S,,) =0.811

— Syes. = [3+,3-], E(Syes) =10

— Gain(S, Has children) = E(S) - (8/14)E(S,,) - (6/14)E(Scs) =
0.940 - (8/14)x0.811 - (6/14)x1.0=0.048



Survey data: Information gain

* Which attribute is the best?
— Gain(S, Marrital status)=0.246 MAX !
— Gain(S, Sex)=0.151
— Gain(S, Has children)=0.048

— Galin(S, Education)=0.029
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Survey data: Information gain

Marital single,  {D4,D5,06,010, D14} [3+,2-] E>0?2??

status ?

marrie

d
{D3,D7,012,D13} [4+,0-] E=0 OK - assign class Yes

ivorced
{D1,D2,D8,09,D11} [2+,63-] E>0 ?2?? <>

 Which attribute should be tested here?

— Gain(S.,, Sex) = 0.97-(3/5)0-(2/5)0 = 0.970 MAX !

sunny?

— Gain(S.,,Has children) = 0.97-(2/5)0-(2/5)1-(1/5)0 = 0.570

sunny?

— Gain(S Education) = 0.97-(2/5)1-(3/5)0.918 = 0.019

sunny?
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Probability estimates

* Relative frequency : p(Class | Cond ) =
— problems with small samples
_ n(Class.Cond)
n(Cond)
[6+,1-] (7) = 6/7
[2+,0-] (2) =2/2=1
 Laplace estimate : _n(Class.Cond)+1 | _»
— assumes uniform prior - n(Cond) +k

distribution of k classes

[6+,1-] (7)) =6+1/7+2=7/9
[2+,0-] (2) =2+1/2+2 = 3/4



Heuristic search in ID3

Search bias: Search the space of decision trees
from simplest to increasingly complex (greedy
search, no backtracking, prefer small trees)

Search heuristics: At a node, select the attribute
that is most useful for classifying examples, split
the node accordingly

Stopping criteria: A node becomes a leaf

— If all examples belong to same class C;, label the
leaf with C;

— If all attributes were used, label the leaf with the
most common value C, of examples in the node

Extension to ID3: handling noise - tree pruning
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Pruning of decision trees

« Avoid overfitting the data by tree pruning

* Pruned trees are
— less accurate on training data
— more accurate when classifying unseen data

78
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Handling noise — Tree pruning

Sources of imperfection
1. Random errors (noise) Iin training examples
* erroneous attribute values
* erroneous classification
2. Too sparse training examples (incompleteness)
3. Inappropriate/insufficient set of attributes (inexactness)

4. Missing attribute values in training examples



Handling noise — Tree pruning

« Handling imperfect data
— handling imperfections of type 1-3
* pre-pruning (stopping criteria)
 post-pruning / rule truncation
— handling missing values

* Pruning avoids perfectly fitting noisy data: relaxing
the completeness (fitting all +) and consistency (fitting
all -) criteria in ID3

80
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Prediction of breast cancer recurrence:
Tree pruning

Degree_of_malig

<3 > 3
Tumor_size Involved_nodes
<15 > 15 <3 > 3
Age no_recur 125 no_recur 30 no_recur 27

recurrence 39 recurrence 18 recurrence 10

<4

no_recur 4
recurrence 1

no_rec 4 recl



Pruned decision tree for
contact lenses recommendation

tear prod.

Nﬁ)rmal

no / yes

reduced /

NONE

[N=12,S+H=0]

SOFT

[S=5,H+N=1]

myope / \hypermetrope

HARD NONE

[H=3,S+N=2] [N=2, S+H=1]

82



83

Accuracy and error

Accuracy: percentage of correct classifications
— on the training set
— 0N unseen instances

How accurate is a decision tree when classifying unseen
Instances

— An estimate of accuracy on unseen instances can be computed,
e.g., by averaging over 4 runs:
 split the example set into training set (e.g. 70%) and test set (e.g. 30%)
* induce a decision tree from training set, compute its accuracy on test
set
Error = 1 - Accuracy

High error may indicate data overfitting



Overfitting and accuracy

 Typical relation between tree size and accuracy

0.9
0.85 —
0.8 /_/
0.75 /_/
0.7 / \ ;/_
0.65 /
0.6
0.55
0.5 : : : : :
0 20 40 60 80 100

120

— On training data
— On test data

* Question: how to prune optimally?
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Avoiding overfitting

* How can we avoid overfitting?

— Pre-pruning (forward pruning): stop growing the tree e.g.,
when data split not statistically significant or too few
examples are in a split

— Post-pruning: grow full tree, then post-prune

\ Pre-pruning
\ Post-pruning

forward pruning considered inferior (myopic)
post pruning makes use of sub trees
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Selected decision/regression
tree learners

 Decision tree learners

— ID3 (Quinlan 1979)

— CART (Breiman et al. 1984)

— Assistant (Cestnik et al. 1987)

— C4.5 (Quinlan 1993), C5 (Seeb5, Quinlan)
— J48 (available in WEKA), Tree (in Orange)

« Regression tree learners, model tree learners

— M5, M5P (implemented in WEKA), Tree (in Orange)
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Selected decision tree learners

* Decision tree learners: Tree (in Orange)

v [ree ? X
i

MName

Tree | Iree

Parameters

] Induce binary tree

] Min. number of instances in leaves: 2 (S
[~] Do not split subsets smaller than: 55
[] Limit the maximal tree depth to: 100 =
Classification

[~ stop when majority reaches [%]: [ 35 T‘
Apply Automatically

? B




Selected decision tree learners

« Homework

— To prepare for the lecture of Petra Kralj Novak on Nov.

11, 2020 on using Tree software in Orange

— See Blaz Zupan: Data Science with the OrangeToolbox

http://videolectures.net/AlindustrySeminar2019 zupan data science/
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Features of C4.5 and J48

* Implemented as part of the WEKA data mining
workbench

« Handling noisy data: post-pruning
« Handling incompletely specified training
Instances: ‘unknown’ values (?)

— In learning assign conditional probability of value v:
p(v|C) = p(vC) / p(C)

— In classification: follow all branches, weighted by
prior prob. of missing attribute values

89



Other features of C4.5

 Binarization of attribute values

— for continuous values select a boundary value
maximally increasing the informativity of the
attribute: sort the values and try every possible
split (done automaticaly)

— for discrete values try grouping the values until
two groups remain *
« ‘Majority’ classification in NULL leaf (with no
corresponding training example)

— if an example ‘falls’ into a NULL leaf during
classification, the class assigned to this example
IS the majority class of the parent of the NULL leaf

x . , o . . . .
the basic C4.5 doesn't support binarisation of discrete attributes, it supports grouping
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Appropriate problems for
decision tree learning

 Classification problems: classify an instance into one
of a discrete set of possible categories (medical
diagnosis, classifying loan applicants, ...)

* Characteristics:
— Instances described by attribute-value pairs
(discrete or real-valued attributes)

— target function has discrete output values
(boolean or multi-valued, if real-valued then regression trees)

— disjunctive hypothesis may be required

— training data may be noisy
(classification errors and/or errors in attribute values)

— training data may contain missing attribute values



Classifier evaluation

* Use of induced models
— discovery of new patterns, new knowledge
— classification of new objects

« Evaluating the quality of induced models
— Accuracy, Error = 1 - Accuracy

— classification accuracy on testing examples =
percentage of correctly classified instances

* split the example set into training set (e.g. 70%) to

Induce a concept, and test set (e.g. 30%) to test its
accuracy

* more elaborate strategies: 10-fold cross validation,
leave-one-out, ...

— comprehensibility (compactness)
— Information contents (information score), significance
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Nn-fold cross validation

A method for accuracy estimation of classifiers

Partition set D into n disjoint, almost equally-sized
folds T,where U, T,= D

for i=1,..,ndo

— form a training set out of n-1 folds: Di = D\T,
— Induce classifier H; from examples in Di

— use fold T, for testing the accuracy of H,

Estimate the accuracy of the classifier by
averaging accuracies over 10 folds T,
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Part Il. Predictive DM techniques

« Decision tree learning

j|> Bayesian Classifier
* Rule learning

 Evaluation
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Bayesian methods

« Bayesian methods — simple but powerful
classification methods

— Based on Bayesian formula

p(D|H)
H | D)= H
p(H | D) 5(D) p(H)

« Main methods:
— Naive Bayesian classifier
— Semi-naive Bayesian classifier
— Bayesian networks *

* Out of scope of this course
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Naive Bayesian classifier

* Probability of class, for given attribute values

V,..V_|C.

p(c, vy ,) = p(e)- P n 190

p(Vl"'Vn)

» For all C; compute probability p(C;), given values v; of all
attributes describing the example which we want to classify
(assumption: conditional independence of attributes, when
estimating p(C;) and p(C; |v))

p(Cj |V,..V,) = p(CJ)H p(pC(JC|\)/|)

« Output Cy,» With maximal posterior probability of class:

Cuax =arg Maxg; p(Cj [V, V)



Semi-naive Bayesian classifier

« Naive Bayesian estimation of probabillities
reliable
reliable) p(c, 1v) P(c, 1)
p(c;)  p(c)

« Semi-naive Bayesian estimation of
probabilities (less reliable)

pP(C; [ Vi, V)
p(c;)
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Probability estimation
* Relative frequency:

€)=" pie, 1) = "
PLC;) = N  PLE; IV = n(v;) j=1..k, for k classes
6+,1-] (7) = 6/7 problems with small samples

2+,0-](2)=2/2=1

» Laplace estimate (prior probabillity):

p(c,) = n(c;)+1

assumes uniform prior
N + k distribution of k classes

[6+,1-] (7)) =6+1/7+2=7/9
[2+,0-] (2) =2+1/2+2 = 3/4



Probability estimation

* Relative frequency:

_ n(Cj) _ n(Cj’Vi) i = classes
p(c;) = N , P(C; |v;) = ) j=1..k, forkcla
* Prior probability: Laplace law
) +1

e m-estimate:

n(c;)+m- pa(c;)
N +m

p(Cj):
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Probability estimation: intuition

« Experiment with N trials, n successful

« Estimate probability of success of next trial

* Relative frequency: n/N
— reliable estimate when number of trials is large
— Unreliable when number of trials is small, e.g.,

1/1=1

« Laplace: (n+1)/(N+2), (n+1)/(N+Kk), k classes
— Assumes uniform distribution of classes

* m-estimate: (n+m.pa)/(N+m)

— Prior probability of success p., parameter m
(weight of prior probability, i.e., number of ‘virtual’
examples )
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Explanation of Bayesian
classifier

Based on information theory

— Expected number of bits needed to encode a message =
optimal code length -log p for a message, whose probability is

p (")
Explanation based of the sum of information gains of

Individual attribute values v, (Kononenko and Bratko 1991,
Kononenko 1993)

—log( p(c; |v,..v,)) =

= —log( p(cj))—i(—log p(c;) +log(p(c; [vi))

* log p denotes binary logarithm



Example of explanation of semi-naive

Bayesian classifier

Hip surgery prognosis

Class = no (“no complications”, most probable class, 2 class problem)

Attribute value For decision| Against
(bit) (bit)

Age = 70-80 0.07
Sex = Female -0.19
Mobility before injury = Fully mobile 0.04
State of health before injury = Other 0.52
Mechanism of injury = Simple fall -0.08
Additional injuries = None 0
Time between injury and operation > 10 days 0.42
Fracture classification acc. To Garden = Garden lll -0.3
Fracture classification acc. To Pauwels = Pauwels Il -0.14
Transfusion = Yes 0.07
Antibiotic profilaxies = Yes -0.32
Hospital rehabilitation = Yes 0.05
General complications = None 0
Combination: 0.21

Time between injury and examination < 6 hours

AND Hospitalization time between 4 and 5 weeks
Combination: 0.63

Therapy = Artroplastic AND anticoagulant therapy = Yes
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Visualization of information
gains for/against C.

Information gain

50
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W7
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Naive Bayesian classifier

Nailve Bayesian classifier can be used

— when we have sufficient number of training examples
for reliable probability estimation

It achieves good classification accuracy

— can be used as ‘gold standard’ for comparison with
other classifiers

Resistant to noise (errors)
— Reliable probability estimation
— Uses all available information

Successful In many application domains
— Web page and document classification

— Medical diagnosis and prognosis, ...
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Improved classification accuracy due ™

to using m-estimate

Primary Breast thyroid | Rheumatology
tumor cancer
#instan 339 288 884 355
#class 22 2 4 6
#attrib 17 10 15 32
#values 2 2.7 9.1 9.1
majority 25% 80% 56% 66%
entropy 3.64 0.72 1.59 1.7
Relative freq. | m-estimate
Primary tumor 48.20% 52.50%
Breast cancer 77.40% 79.70%
hepatitis 58.40% 90.00%
lymphography 79.70% 87.70%
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Part Il. Predictive DM techniques

« Decision tree learning
« Bayesian Classifier

j|> Rule learning

 Evaluation
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Rule Learning

Person Age Spect. presc. Astigm. |Tear prod. Lenses knOWIedge dlscovery
o1 young myope no reduced NONE from data
02 young myope no normal SOFT
03 young myope yes reduced NONE
o4 young myope yes normal HARD
05 young | hypermetrope no reduced NONE
06-013 3 .
014 ore-presbyc hypermetrope no normal SOFT RUIe Iearnlng MOdel a Set Of rU|eS
015 ore-presbyc hypermetrope yes reduced NONE . ..
016 ore-presbyc hypermetrope  yes normal NONE Patterns |nd|V|dua| rules
017 |presbyopic myope no reduced NONE
018 preshyopic myope no normal NONE
019-023
024  |presbyopic| hypermetrope yes normal NONE
data

Given: transaction data table, relational database (a set of
objects, described by attribute values)
Find: a classification model in the form of a set of rules;

or a set of interesting patterns in the form of individual
rules
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Rule set representation

Rule base is a disjunctive set of conjunctive rules

Standard form of rules:
IF Condition THEN Class

Class IF Conditions
Class « Conditions

Form of CN2 rules:
IF Conditions THEN MajClass [ClassDistr]

Rule base: {R1,R2, R3, ..., DefaultRule}
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Contact lens data:
Classification rules

Type of task: prediction and classification
Hypothesis language: rules X = C, if Xthen C
X conjunction of attribute values, C class

tear production=reduced — lenses=NONE
tear production=normal & astigmatism=yes &
spect. pre.=hypermetrope — lenses=NONE
tear production=normal & astigmatism=no — lenses=SOFT
tear production=normal & astigmatism=yes &
spect. pre.=myope — lenses=HARD
DEFAULT lenses=NONE
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Rule learning

« Two rule learning approaches:
— Learn decision tree, convert to rules
— Learn set/list of rules
« Learning an unordered set of rules
« Learning an ordered list of rules
« Heuristics, overfitting, pruning
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Contact lenses: convert decision tree to

an unordered rule set

reduced Nﬁ)rmal
NONE

no / yes
[N=12,S+H=0]

SOFT
[S=5,H+N=1] myope/ \hypermetrope

HARD NONE

[H=3,S+N=2] [N=2, S+H=1]

tear production=reduced => lenses=NONE [S=0,H=0,N=12]

tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE [S=0,H=1,N=2]

tear production=normal & astigmatism=no => lenses=SOFT  [S=5,H=0,N=1]
tear production=normal & astigmatism=yes & spect. pre.=myope => lenses=HARD
[S=0,H=3,N=2]

DEFAULT lenses=NONE Order independent rule set (may overlap)
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Contact lenses: convert decision tree to

decision list
reduced N?rmal

no es
[N=12,S+H=0] / J

SOFT
[S=5,H+N=1] myope/ \hypermetrope

HARD NONE

[H=3,S+N=2] [N=2, S+H=1]

IF tear production=reduced THEN lenses=NONE
ELSE /*tear production=normal*/
IF astigmatism=no THEN lenses=SOFT
ELSE /*astigmatism=yes*/
IF spect. pre.=myope THEN lenses=HARD
ELSE /* spect.pre.=hypermetrope*/
lenses=NONE Ordered (order dependent) rule list
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Converting decision tree to rules, and
rule post-pruning (Quinlan 1993)

* Very frequently used method, e.g., in C4.5
and J48

* Procedure:
— grow a full tree (allowing overfitting)
— convert the tree to an equivalent set of rules
— prune each rule independently of others
— sort final rules into a desired sequence for use



Concept learning:
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ask reformulation for rule

learning: (pos. vs. neg. examples of Target class)

Person Age Spect. presc. Astigm. Tear prod. ~ Lenses
Ol 17 myope no reduced NO
02 23 myope no normal YES
O3 22 myope yes reduced NO
O4 27 myope yes normal YES
O5 19 hypermetrope no reduced NO

06-013
014 35 hypermetrope no normal YES
015 43 hypermetrope yes reduced NO
016 39 hypermetrope yes normal NO
017 54 myope no reduced NO
018 62 myope no normal NO

019-023
024 56 hypermetrope yes normal NO



Original covering algorithm
(AQ, Michalski 1969,86)

Given examples of N classes C,, ..., Cu ]

for each class Ci do i
— EiI := Pi U Ni (Pi pos., Ni neg.) + 4
— RuleBase(Ci) := empty e

— repeat {learn-set-of-rules}

 learn-one-rule R covering some positive
examples and no negatives

» add R to RuleBase(Ci)
* delete from P1 all pos. ex. covered by R
— until Pi = empty



Multi-class learning: -
One-against-all learning strategy

I
! -
X ! +
X ! * s
X I
b *
x X I * "
b i * *
II X Y *
X # \ +
X & % +
- \. *
+
- - - N
. - a o n *
Al o \\ ¥ -
- I.l.':ll ﬂﬂs o e
!
- - ! L R
.. e ? o Y I B
- ) ' oo ° ! .
= - v F B
i -1 ¢t . - - -
- - 1 - = - - -
W= _ -
- # & . = = o, * - - - . - - _ _
S ; . S - - - - - T
" W o _ = - + 5 + _ _ - - -
. # » 1 - -- . ', . T - - T - -
’ # # ! : - \‘w * * - __ - o - _ - -
’ " 1 _ ., _ B - -
, i - . . h - -
# # ' - T R N S - . S - -
' o -z o - -zt s - I - -
- - - = - - R + - _ - - = -
- i - - = - - . ¥ + - - - - -
== _ = - - - = » - = - - - -
- - - - - R
- = EW il - - - - - - _ ¥ + o+ - - - - -
. Jace ¢|aca e i . : S ;
Fig. 10.2: A multiclass classification w ~ .- - N o Lo-T -
- - - - -__ - -I\. * + ‘ 4+¢- * 1‘ - -
- - + -
- - - _ _ = \I - JJ . . ¥ 1‘ _
- - - - ¥ " * [
- - - - 1 - * \
- - A - oL
! . T
-~ = - = . * P = = _ - -
- - + . ' _ = _ -
- - - - - - - ' - - - - - -
oo . - }
- _ - . -, . A ~ - B - _ AN B -
- _ - - _ - * ‘J - - - ‘l‘ ‘\ = - -
e, - - - Tea e ¢ - - - . - e T o=
N N . .
l _ - _ - _ - " -
* . Ve -To = - _ - _=_ = - Lo ,":_ " - _
- - - = - - - - - - = 0 +¥ e . _
* + 4 I\ - . - - . " - - - - - _ " _ - e A -
P - v - - . - - - . - - _ _ = ] . s ¥ = _
. v - - L N - . . (R —-_____I - -
- 1 o7 . - - - = T .
PR - - - - - - -~ - -

Fig. 10.4: The six binary learning problems that are the result of one-against-all
class binarization of the multiclass dataset of Figure 10.2.



117

Covering algorithm

Positive examples Negative examples
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Covering algorithm

N Rulel: Cl=+ « Cond2 AND Cond3
Positive examples 1 Negative examples

AV
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Covering algorithm

N Rulel: Cl=+ « Cond2 AND Cond3
Positive examples 1 Negative examples

Y
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Covering algorithm

N Rulel: Cl=+ « Cond2 AND Cond3
Positive examples 1 Negative examples

QY

Rule2: Cl=+ « Cond8 AND Cond6



121

Learn-one-rule:
Greedy vs. beam search

 learn-one-rule by greedy general-to-specific
search, at each step selecting the "best’
descendant, no backtracking

— e.g., the best descendant of the initial rule
lenses=NONE
— Is rule lenses=NONE « tear production=reduced

* beam search: maintain a list of k best candidates
at each step; descendants (specializations) of
each of these k candidates are generated, and
the resulting set Is again reduced to k best
candidates
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Learn-one-rule:
Greedy vs. beam search

 |earn-one-rule by greedy general-to-specific search,
at each step selecting the "best’ descendant, no
backtracking
e.g., best descendant of initial rule lenses=NONE <«
IS rule lenses=NONE « tear production=reduced
e.g., best descendant of initial rule Approved=yes «
IS rule Approved=yes « Marital status = married

* beam search: maintain a list of k best candidates at
each step,; descendants (specializations) of each of
these k candidates are generated, and the resulting
set Is again reduced to k best candidates



Recall: Binary classification problem =
Survey data

Education Marital Status Sex  Has Children | Approved

primary single male no no

primary single male yes no

primary married male no yes
university divorced female no yes
university married female yes yes
secondary single male no no
university single female no yes
secondary divorced female no yes
secondary single female yes yes
secondary married male yes yes

primary married female no yes
secondary divorced male yes no
university divorced female yes no
secondary divorced male no yes




Survey data:
Classification rule learning

LI

Education Marital Status Sex Has Children | Approved AND
primary single male no no THEN
primary single male yes no
primary married male no yes _

university divorced female no yes IF

university married female yes yes AND
secondary single male no no THEN
university single female no yes

secondary divorced female no yes [F

secondary single female yes yes N

secondary married male yes yes THEN
primary married female no yes

secondary divorced male yes no I F

university divorced female yes no AND

secondary divorced male no yes PHEN
IF

AT

THEN

MaritalStatus single
Sex = female

Approved = yes
MaritalStatus = single

Sex = male
Approved = no
MaritalStatus married
Approved = yes

MaritalStatus = diveorced
HasChildren = vyes
Approved = no

MaritalStatus = divorced
HasChildren no
Approved = yes
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yas (219) na (V5]
| |

ves (09) no (35)
| |

veas (4/9) no (095
| |

yes (09) no (2/8)
| |

yes (3/9) no (O/5)




Survey data:
Classification rule pruning

Education Marital Status Sex Has Children | Approved
primary single male no no
primary single male yes no
primary married male no yes
university divorced female no yes
university married female yes yes
secondary single male no no
university single female no yes
secondary divorced female no yes
secondary single female yes yes
secondary married male yes yes
primary married female no yes
secondary divorced male yes no
university divorced female yes no
secondary divorced male no yes
[ MaritalStatus

THEN Approved = ye

LI Sex

[F e

I female
THEN Approved = ye

male

THEN Approved =

DEFAULT

Approved =

no

3

5

LI
AND
THEN
IF
AMND
THEN

=
i
=

ANC
THEMN

IF
AN
THEN

marri

ves

MaritalStatus

Sex = fema
Approved =

MaritalSta
Sex = male
Approved =

MaritalStatu

Approved =

Maritalsta
HasChildre
Approved =

Maritalsta

HasChildre
Approved =

e

le
yes

Tus =

s

yes

Ltus =
I“'_ =
[10}

cCus =
n no

yes

yas (2/9)

L=

single

single

married

yas (219)
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na (V5]

ves (09)

no (35)

ves (4/9)

no (VS)

yes (09)

o (2/5)

yes (39)

na (/5]

yas (6/9)

yeas (39)
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| earn-one-rule as heuristic search:
29 rule in Survey data example

Approved = yes «—

Approved = yes « Approved = yes «—

Has children = no Sex = male
Approved = yes « Approved = yes «
Has children = yes Sex = female
Approved = yes «—
Sex = female
Has children = no Approved = yes «
Sex = female
Approved = yes «— Approved = Yes < marital status=divorced

Sex = female Sex = female
Has children =yes  Marital status = single
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Learn-one-rule as heuristic search:
29 rule in Survey data example

Approved = yes «— [9+,5-] (14)

Approved = yes « Approved = yes «—

Has ;:hildr‘en = ho Sex = male
[6+.2-](8) Approved = yes —  Approved = yes « [3+4-1(7)
Has children = yes Sex = female
[3+3-1 (6) o511

Approved = yes «—
Sex = female

Has children = no Approved = yes «
Sex = female

Approved = yes « Approved = yes < mapital status=divorced

Sex = female Sex = female
Has children =yes  Marital status = single

[2+,0—] (2)
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What is “high” rule accuracy
(rule precision) ?

Rule evaluation measures:
— aimed at maximizing classification accuracy
— minimizing Error = 1 - Accuracy
— avoiding overfitting
BUT: Rule accuracy/precision should be traded

off against the “default” accuracy/precision of the

rule

— 68% accuracy is OK if there are 20% examples of that class in
the training set, but bad if there are 80%

Relative accuracy (relative precision)
— RAcc(Cl «~Cond) = p(Cl | Cond) — p(Cl)
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| earn-one-rule:

search heuristics

Assume two classes (+,-), learn rules for + class (Cl). Search
for specializations of one rule R = Cl «+ Cond from RuleBase.

Expected classification accuracy: A(R) = p(Cl|Cond)

Informativity (info needed to specify that example covered by
Cond belongs to Cl): I(R) = - log,p(Cl|Cond)

Accuracy gain (increase in expected accuracy):
AG(R’,R) = p(Cl|Cond’) - p(Cl|Cond)
Information gain (decrease in the information needed):
IG(R’,R) = log,p(Cl|Cond’) - log,p(Cl|Cond)
Weighted measures favoring more general rules: WAG, WIG
WAG(R',R) =
p(Cond’)/p(Cond) . (p(Cl|Cond’) - p(CIl|Cond))

Weighted relative accuracy trades off coverage and relative
accuracy WRAcc(R) = p(Cond).(p(Cl|Cond) - p(Cl))



Ordered set of rules:
If-then-else rules

rule Class IF Conditions is learned by first
determining Conditions and then Class

Notice: mixed sequence of classes C1, ..., Cnin
RuleBase

But: ordered execution when classifying a new
Instance: rules are sequentially tried and the first
rule that fires’ (covers the example) is used for
classification

Decision list {R1, R2, R3, ..., D}: rules Ri are
Interpreted as If-then-else rules

If no rule fires, then DefaultClass (majority class In
ECUI‘)

130
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Seqguential covering algorithm

RuleBase := empty
EEcur;: EE
repeat

— learn-one-rule R

— RuleBase := RuleBase U R

- E., .= E., - {examples covered and correctly

cur cur

classified by R} (DELETE ONLY POS. EX.!)
— until performance(R, E.,) < ThresholdR
RuleBase := sort RuleBase by performance(R,E)
return RuleBase
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| earn ordered set of rules
(CN2, Clark and Niblett 1989)

RuleBase := empty
EEcur;: EE
repeat

— learn-one-rule R

— RuleBase := RuleBase U R

- E., = E., - {all examples covered by R}

cur cur

(NOT ONLY POS. EX.!)
until performance(R, E_,) < ThresholdR
RuleBase := sort RuleBase by performance(R,E)
RuleBase := RuleBase U DefaultRule(E_ )
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| earn-one-rule:
Beam search in CN2

 Beam search in CN2 learn-one-rule algo.:

— construct BeamsSize of best rule bodies
(conjunctive conditions) that are statistically
significant

— BestBody - min. entropy of examples covered
by Body

— construct best rule R := Head « BestBody by

adding majority class of examples covered by
BestBody in rule Head

» performance (R, E.,) : - Entropy(E_,)

— performance(R, E. ) < ThresholdR (neg. num.)
— Why? Ent. > tis bad, Perf. = -Ent < -t is bad



Variations

Sequential vs. simultaneous covering of data (as
in TDIDT): choosing between attribute-values vs.
choosing attributes

Learning rules vs. learning decision trees and
converting them to rules

Pre-pruning vs. post-pruning of rules
What statistical evaluation functions to use
Probabilistic classification

Best performing rule learning algorithm: Ripper

JRIp implementation of Ripper in WEKA, available
In ClowdFlows

134
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CN2 rule learner in Orange

‘& CN2 Rule Induction ? ¥
Name
CN2 rule inducer
Rule ordering Covering algorithm
(® Ordered (® Exdusive
ceu O Unordered O Weighted ¥: 0.70 %
..
Rule search
CN2 Rule Induction A e = =
Beam width: 5 is
Rule filtering
Minimum rule coverage: 1S
Maximum rule length: 5 j&
Statistical significance —Ta
L Gefaut o): 100 i
L] l(ipe::nvte a’;?‘iﬁmm 1.00 &
% Apply Automatically

? B
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Probabilistic classification

In the ordered case of standard CN2 rules are interpreted in an IF-
THEN-ELSE fashion, and the first fired rule assigns the class.

In the unordered case all rules are tried and all rules which fire are

collected. If a clash occurs, a probabilistic method is used to resolve the

clash.

A simplified example:

1. tear production=reduced => lenses=NONE [S=0,H=0,N=12]

2. tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE [S=0,H=1,N=2]

3. tear production=normal & astigmatism=no => lenses=SOFT

[S=5,H=0,N=1]

4. tear production=normal & astigmatism=yes & spect. pre.=myope =>
lenses=HARD [S=0,H=3,N=2]

5. DEFAULT lenses=NONE

Suppose we want to classify a person with normal tear production and
astigmatism. Two rules fire: rule 2 with coverage [S=0,H=1,N=2] and
rule 4 with coverage [S=0,H=3,N=2]. The classifier computes total
coverage as [S=0,H=4,N=4], resulting in probabilistic classification into
class H with probability 0.5 and N with probability 0.5. In this case, the
clash can not be resolved, as both probabilities are equal.
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Part Il. Predictive DM techniques

« Decision tree learning
« Bayesian Classifier
* Rule learning

j|> Evaluation
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Classifier evaluation

Accuracy and Error
n-fold cross-validation

Confusion matrix
ROC
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Evaluating hypotheses

« Use of induced hypotheses
— discovery of new patterns, new knowledge
— classification of new objects

« Evaluating the quality of induced hypotheses
— Accuracy, Error = 1 - Accuracy

— classification accuracy on testing examples =
percentage of correctly classified instances

* split the example set into training set (e.g. 70%) to

Induce a concept, and test set (e.g. 30%) to test its
accuracy

* more elaborate strategies: 10-fold cross validation,
leave-one-out, ...

— comprehensibility (compactness)
— Information contents (information score), significance



N-fold cross validation

A method for accuracy estimation of classifiers

Partition set D into n disjoint, almost equally-sized
folds T,where U, T,= D

for i=1,..,ndo

— form a training set out of n-1 folds: Di = D\T,
— Induce classifier H; from examples in Di

— use fold T, for testing the accuracy of H,

Estimate the accuracy of the classifier by
averaging accuracies over 10 folds T,

140
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Confusion matrix and
rule (in)accuracy

« Accuracy of a classifier is measured as TP+TN / N.

e Suppose two rules are both 80% accurate on an
evaluation dataset, are they always equally good?

— e.g., Rule 1 correctly classifies 40 out of 50 positives and 40 out
of 50 negatives; Rule 2 correctly classifies 30 out of 50
positives and 50 out of 50 negatives

— on atest set which has more negatives than positives, Rule 2 is
preferable;

— on a test set which has more positives than negatives, Rule 1 is
preferable; unless...

— ...the proportion of positives becomes so high that the ‘always
positive’ predictor becomes superior!

« Conclusion: classification accuracy Is not always an
appropriate rule quality measure



ROC space

True positive rate =
#true pos. / #pos.

— TPr, = 40/50 = 80%
— TPr, = 30/50 = 60%

False positive rate

= #false pos. / #neq.
— FPr, = 10/50 = 20%
— FPr, = 0/50 = 0%

ROC space has

FPr on X axis

— TPronY axis

True positive rate

Classifier 1

146

Predicted positive | Predicted negative
Positive examples 40 10 50
Negative examples 10 40 50
50 50 100

100%

80%

60% ;

40%

20%

0%

Classifier 2

Predicted positive

Predicted negative

Positive examples 30 20 50
Negative examples 0 50 50
30 70 100
0% 20% 40% 60% 80% 100%

False positive rate




The ROC space

true positive rate

100%
*

80%

60%

40%

20% # Confirmation rules

® WRAcc
CN2
0% 4 |
0% 20% 40% 60% 80%

false positive rate

100%
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The ROC convex hull

true positive rate

100%

80%

60%

40% /
20%

0%

0%

20%

40% 60%

false positive rate

80%

100%
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Course Qutline

l. Introduction 1. Predictive DM
Data Mining and KDD process Regression
Introduction to Data Mining

« Data Mining platforms

I\VV. Descriptive DM

Il. Predictive DM « Predictive vs. descriptive
« Decision Tree learning induction

. Bayesian classifier * Subgroup discovery

« Classification rule learning * Association rule learning

« Classifier evaluation « Hierarchical clustering
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lll. Predictive DM — Regression

Estimation or regression task: given objects described
with attribute values, induce a model to predict the
numeric class value

Data are objects, characterized with attributes (discrete
or continuous), classes of objects are continuous
(numeric)

Regression trees, linear and logistic regression, ANN,
KNN, ...

Regression tree learners, model tree learners:

— M5, M5P (implemented in WEKA), Tree (in Orange)
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Estimation/regression example:
Customer data

Customer Gender Age Income Spent
cl male 30 214000 18800
c2 female 19 139000 15100
c3 male 55 50000 12400
c4 female 48 26000 8600
c5 male 63 191000 28100

06-013
cl4 female 61 95000 18100
cl5 male 56 44000 12000
cl6 male 36 102000 13800
cl7 female 57 215000 29300
cl8 male 33 67000 9700
cl9 female 26 95000 11000

c20 female 55 214000 28800



Customer data:
regression tree

< 108000 / - ! > 108000

12000
3423/ > 42.5

16500 26700

In the nodes one usually has
Predicted value +- st. deviation
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Predicting algal biomass: regression
tree

Jan.-June

/ w - Dec.
C s D

4.32+2.07 2.34+1.65

<9.34

>

/

<59 >5.9 <91 ; w
1.28+1.08
2.97+1.09 2.08 +0.71

<2&1i// 213
> 2.

1.15+0.21 0.70+0.34
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Regression

Classification

Data: attribute-value description

Target variable:
Continuous

Target variable:
Categorical (nominal)

Evaluation: cross validation, separate test set, ...

Error: Error:
MSE, MAE, RMSE, ... 1-accuracy
Algorithms: Algorithms:

Linear regression, regression
trees,...

Decision trees, Naive Bayes, ...

Baseline predictor:
Mean of the target variable

Baseline predictor:
Majority class
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Example regression problem
« data about 80 people: Age and Height

Age ([ Height
5 3 1.03
$o3 L P Ny tpt o 5 119
;:"’ :°.;:s ¢ %’.’o} R 5 1.26
15 ‘} g | 139
£ 15 | 169
5 2 ' 19 | 167
72 | 1.86
0.5 75 | 1.85
* Height 41 159
0 T I 483 160
0 50 100 54 | 1.90
Age 71 187




Test set

Age Height
2 0.85
10 1.4
35 1.7
70 1.6
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Baseline numeric model

« Average of the target variable
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Height

2

1.8
1.6

—

1.4
1.2

L

0.8

0.6
0.4

0.2
0

0

* Height
= Average predictor

60

80

100




Age

Baseline numeric predictor

« Average of the target variable is 1.63

2
1.8
1.6
1.4
1.2

1
0.8
0.6
0.4
0.2

0

Height

Height

L 2
CERE B ste,? : ®s 0’.:, % *
- [ | m - |
¢
:0
G
o
{od
2
+ Height N
| | = Average predictor |
Baseline 20 40 60 80 100

0.85

10

1.4

35

1.7

70

1.6




Linear Regression Model

Height = 0.0056 * Age + 1.4181
2.5
2 TN . ou gm ™"
&% 00 ?%? o o 2 -~
R R N R
= 15 &
] é
T 1 _f
0.5 ¢ Height =
= Prediction
O | | | |
0 20 40 60 80 100
Age

159
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Regression tree

==1245 =125
s s 233%)
<=6.5 =6.5 Height =
E3 s s o 1709
==4 =4 Height = 2
l T 1.4644 Y S SRR
e wawie H S0 o
Height = Height = 1o =gt
1.3932 1.4025 £ é
z 19
T
0.5 _
¢ Height
® Prediction
0 I
0 50 100
Age




Model tree

==12.5

Height =
0.0333 * Age
+ 1.1366
2 RN oo (S ‘e, ¢
é"_.k’- gmmi 0‘ - ? !
15 ¢ oo .”’0 oo %o 00 ¢
L
(@)
5 1%
T
0.5 + Height
= Prediction
O | | | |
0 20 40 60 80 100

Age

=12.5

—

Height =
0.0011 * Age
+ 1.6692



KNN — K nearest neighbors

* Looks at K closest examples (by age) and predicts the
average of their target variable

K=3

Height

2.00
1.80
1.60
1.40
1.20
1.00
0.80
0.60
0.40
0.20
0.00

+ Height

0 20 40 60
Age

= Prediction KNN, n=3

80

100
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Which predictor iIs the best?

Linear |Regression
Age Height | Baseline | regression tree Model tree KNN
2 |0.85] 1.63 | 143 1.39 1.20 | 1.01
10 | 1.4 | 1.63 | 1.47 1.46 1.47 | 1.51
35 | 1.7 ] 1.63 | 1.61 1.71 1.71 | 1.67
/0 | 16| 1.63 | 181 1.71 1.75 | 1.81
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Course Qutline

l. Introduction 1. Predictive DM
Data Mining and KDD process Regression
Introduction to Data Mining

« Data Mining platforms

I\VV. Descriptive DM

Il. Predictive DM « Predictive vs. descriptive
« Decision Tree learning induction

. Bayesian classifier * Subgroup discovery

« Classification rule learning * Association rule learning

« Classifier evaluation « Hierarchical clustering
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Part IV. Descriptive DM technigues

j>- Predictive vs. descriptive induction
» Subgroup discovery
* Association rule learning
» Hierarchical clustering



166

Descriptive DM:
Subgroup discovery example -
Customer data

Customer Gender Age Income Spent  BigSpender
cl male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
c5 male 63 191000 28100 yes

06-013
cl4 female 61 95000 18100 yes
cl5 male 56 44000 12000 no
cl6 male 36 102000 13800 no
cl7 female 57 215000 29300 yes
cl8 male 33 67000 9700 no
cl9 female 26 95000 11000 no

c20 female 55 214000 28800 yes



Customer data:
Subgroup discovery

Type of task: description (pattern discovery)
Hypothesis language: rules X = Y, if XthenY
X Is conjunctions of items, Y Is target class

Age > 52 & Sex = male =» BigSpender =no

Age > 52 & Sex = male & Income < 73250
=» BigSpender = no
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Descriptive DM:
Association rule learning example -
Customer data

Customer Gender Age Income Spent  BigSpender
cl male 30 214000 18800 yes
c2 female 19 139000 15100 yes
c3 male 55 50000 12400 no
c4 female 48 26000 8600 no
c5 male 63 191000 28100 yes

06-013
cl4 female 61 95000 18100 yes
cl5 male 56 44000 12000 no
cl6 male 36 102000 13800 no
cl7 female 57 215000 29300 yes
cl8 male 33 67000 9700 no
cl9 female 26 95000 11000 no

c20 female 55 214000 28800 yes



Customer data:
Assoclation rules

Type of task: description (pattern discovery)
Hypothesis language: rules X = Y, if Xthen Y
X, Y conjunctions of items

1. Age > 52 & BigSpender = no = Sex = male
2. Age > 52 & BigSpender = no =
Sex = male & Income < 73250
3. Sex = male & Age > 52 & Income < 73250 =>»
BigSpender = no
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Descriptive DM:
Clustering and association rule learning

example - Customer data
\ /

Customer Gender Age Income Spent RigSpendq’r
cl male 30 214000 18800
c2 female 19 139000 15100
c3 male 55 50000 12400
c4 female 48 26000 8600
c5 male 63 191000 28100

06-013
cla female 61 95000 18100
cl5 male 56 44000 12000
cl6 male 36 102000 13800
cl7 female 57 215000 29300
cl18 male 33 67000 9700
cl9 female 26 95000 11000

c20 female 55 214000 28800
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Predictive vs. descriptive
Induction

* Predictive induction: Inducing classifiers for solving
classification and prediction tasks,
— Classification rule learning, Decision tree learning, ...
— Bayesian classifier, ANN, SVM, ...
— Data analysis through hypothesis generation and testing

« Descriptive induction: Discovering interesting
regularities in the data, uncovering patterns, ... for
solving KDD tasks

— Symbolic clustering, Association rule learning, Subgroup
discovery, ...

— Exploratory data analysis
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Descriptive DM

Often used for preliminary explanatory data
analysis

User gets feel for the data and its structure

Aims at deriving descriptions of characteristics
of the data

Visualization and descriptive statistical
techniques can be used
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Predictive vs. descriptive DM:
Summary from a rule learning
perspective

* Predictive DM: Induces rulesets acting as classifiers
for solving classification and prediction tasks

« Descriptive DM: Discovers individual rules
describing interesting regularities in the data

« Therefore: Different goals, different heuristics,
different evaluation criteria
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Descriptive DM

* Description

— Data description and summarization: describe elementary and
aggregated data characteristics (statistics, ...)

— Dependency analysis:
 describe associations, dependencies, ...
« discovery of properties and constraints

« Segmentation

— Clustering: separate objects into subsets according to distance and/or
similarity (clustering, SOM, visualization, ...)

— Subgroup discovery: find unusual subgroups that are significantly
different from the majority (deviation detection w.r.t. overall class
distribution)
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Part IV. Descriptive DM technigues

* Predictive vs. descriptive induction

)« Subgroup discovery
* Association rule learning

» Hierarchical clustering




Subgroup Discovery

Person Age Spect. presc. Astigm. Tear prod.  Lenses
o1 17 myope no reduced NO 3
02 23 myope no normal YES SubgrOU p D|SCOVe I’y
03 22 myope yes reduced NO
04 27 myope yes normal YES
05 19 hypermetrope no reduced NO
06-013 Class YES
014 35 hypermetrope no normal YES
015 43 hypermetrope yes reduced NO 2
016 39 hypermetrope yes normal NO
017 54 myope no reduced NO
018 62 myope no normal NO
019-023 o
024 56 hypermetrope yes normal NO

Class NO

« A task in which individual interpretable patterns in the

form of rules are induced from data, labeled by a

predefined property of interest.

« SD algorithms learn several independent rules that
describe groups of target class examples
— subgroups must be large and significant
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Classification versus Subgroup Discovery

« Classification (predictive induction) -
constructing sets of classification rules
— aimed at learning a model for classification or prediction
— rules are dependent

« Subgroup discovery (descriptive induction) —
constructing individual subgroup describing
rules

— aimed at finding interesting patterns in target class
examples
« large subgroups (high target class coverage)
 with significantly different distribution of target class examples (high
TP/FP ratio, high significance, high WRAcc

— each rule (pattern) is an independent chunk of knowledge
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Classification versus Subgroup discovery




Subgroup discovery

Education Marital Status Sex  Has Children | Approved
primary single male no no
primary single male ves no
primary married male no yes

university divorced female no yes

university married female yes yes
secondary single male no no
university single female no yes
secondary divorced female no yes
secondary single female yes yes
secondary married male yes yes

primary married female no yes
secondary divorced male yes no
university divorced female yes no
secondary divorced male no yes

Approved = yes « Sex = female
Approved = yes «— Marital status = married

Approved = yes «— Marital status = divorced & Has children = no

Approved = yes < Education = university

Selected rules discovered by Apriori-SD subgroup discovery algorithm.
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Subgroup discovery In
High CHD Risk Group Detection

Input: Patient records described by anamnestic,
laboratory and ECG attributes

Task: Find and characterize population subgroups
with high CHD risk (large enough, distributionaly
unusual)

From best induced descriptions, five were selected by the expert
as most actionable for CHD risk screening (by GPSs):

high-CHD-risk « male & pos. fam. history & age > 46
high-CHD-risk «— female & bodymassindex > 25 & age > 63
high-CHD-risk « ...
high-CHD-risk « ...
high-CHD-risk « ...

(Gamberger & Lavrac, JAIR 2002)
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Subgroup Discovery: Medical Use Case

Find and characterize population subgroups with high
risk for coronary heart disease (CHD) (Gamberger, Lavrac,
Krstacic)
Al for males: principal risk factors

CHD <« pos. fam. history & age > 46
A2 for females: principal risk factors

CHD <« bodyMassindex > 25 & age >63

Al, A2 (anamnestic info only), B1, B2 (an. and physical
examination), C1 (an., phy. and ECG)

Al: supporting factors (found by statistical analysis):
psychosocial stress, as well as cigarette smoking,
hypertension and overweight
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Subgroup visualization

1
B1

B2
Al

The CHD task: Find,
characterize and visualize
population subgroups with high
CHD risk (large enough,
distributionally unusual, most
actionable)




Subgroup discovery In functional
genomics

* Functional genomics is a typical scientific discovery
domain, studying genes and their functions

* Very large number of attributes (genes)

* Interesting subgroup describing patterns discovered
by SD algorithm

CancerType = Leukemia

IF KIAA0128 = DIFFE. EXPRE

AND

* Interpretable by biologists
D. Gamberger, N. Lavrag, F. Zelezny, J. Tolar

Journal of Biomedical Informatics 37(5):269-284,
2004
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Subgroups vs. classifiers

« Classifiers:
— Classification rules aim at pure subgroups
— A set of rules forms a domain model
« Subgroups:
— Rules describing subgroups aim at significantly higher
proportion of positives

— Each rule is an independent chunk of knowledge

e Link
— SD can be viewed as
cost-sensitive positives negatives

classification true IEEE
— Instead of FNcost we Positives

aim at increased TPprofit




Recall: Survey data

Classification rule learning

Education Marital Status Sex Has Children | Approved
primary single male no no
primary single male yes no
primary married male no yes
university divorced female no yes
university married female yes yes
secondary single male no no
university single female no yes
secondary divorced female no yes
secondary single female yes yes
secondary married male yes yes
primary married female no yes
secondary divorced male yes no
university divorced female yes no
secondary divorced male no yes

LI
AND
THEN
IF
AMND
THEN

=
i
=

ANC
THEMN

IF
AN
THEN

MaritalStatus

Sex = femal
Approved =

MaritalStat
Sex = male
Approved =

MaritalSta
Approved =

Marital3Stat
HasChildren
Approved =

Maritalstat
HasChildren
Approved =

single
L=
yes

us = single

tus married

yes
us = diveorced
= 5

e}

s = divorced
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yas (219) na (V5]
| |

ves (09) no (35)
| |

veas (4/9) no (095
| |

yes (09) no (2/8)
| |

yes (3/9) no (O/5)




Survey data e
LE MaritalStatus single
Education Marital Status ~ Sex  Has Children | Approved AND Sex = female yas (2/9) no {V5)
primary single male no no THEN Approved = yes | |
primary single male yes no
primary married male no yes _ e+ . ,
university divorced female no yes IF MaritalStatus = s lngl = res (0/9) no (3/5)
university married female yes yes AND Sex = male ¥es -
secondary single male no no THEN Approved = no | |
university single female no yes
secondary dn.rorced female no yes [F MaritalStatus married ves (4/9) no (VS)
secondary single female yes yes N | |
secondary married male yes yes THEN Approved = yes
primary married female no yes
secondary divorced male yes no [F MaritalStatus = divoerced
university divorced female yes no AND HasChildren = yes yes (09) no (2/8)
secondary divorced male no yes THEN Approved = no | |
IF MaritalStatus = divorced
AND HasChildren = no yes (3/9) no {0/5)
THFM Arnmnrotrard = wraa | |
IF MaritalStatus = married yes (4/9) no (0/5)
THEN Approved = yes RN ]
IF MaritalStatus = divorced ves (3/9) no (0/6)
AND HasChildren = no | = ]
THEN Approved = yes
ves (6/9) | no(1/5)
IF Sex = female | N 'ﬁﬁﬂia |
THEN Approved = yes
IF Education = university yes {3/9) no (1/5)
THEN Approved = yes | N\NZ ]
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Classification Rule Learning for
Subgroup Discovery: Deficiencies

* Only first few rules induced by the covering
algorithm have sufficient support (coverage)

« Subsequent rules are induced from smaller and
strongly biased example subsets (pos. examples
not covered by previously induced rules), which
hinders their ability to detect population
subgroups

e ‘Ordered’ rules are induced and interpreted
sequentially as a if-then-else decision list
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CN2-SD: Adapting CN2 Rule
Learning to Subgroup Discovery

Weighted covering algorithm

Weighted relative accuracy (WRAcc) search
heuristics, with added example weights

Probabilistic classification

Evaluation with different interestingness
measures



CN2-SD: CN2 Adaptations

General-to-specific search (beam search) for best rules
Rule quality measure:
— CN2: Laplace: Acc(Class « Cond) =

= p(Class|Cond) = (n_+1) / (n,_.+k)
— CN2-SD: Weighted Relative Accuracy

WRAcc(Class « Cond) =
P(Cond) (p(Class|Cond) - p(Class))

Weighted covering approach (example weights)
Significance testing (likelihood ratio statistics)
Output: Unordered rule sets (probabilistic classification)

189
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CN2-SD: Weighted Covering

« Standard covering approach:
covered examples are deleted from current training set

» Weighted covering approach:
— weights assigned to examples
— covered pos. examples are re-weighted:
In all covering loop iterations, store
count i how many times (with how many
rules induced so far) a pos. example has
been covered: w(e,i), w(e,0)=1
« Additive weights: w(e,i) = 1/ (i+1)
w(e,i) — pos. example e being covered i times
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Subgroup Discovery

Positive examples Negative examples

1l0 1-0 1 o

1.0 ;0 1.0 49

1.0 1.0 ;4 10

1.0
1.0
1.0
1.0

1.0
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Subgroup Discovery

Rulel: Cl=+ « Cond6 AND Cond2

Positive examples Negative examples

1.0

1.0
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Subgroup Discovery

Positive examples Negative examples

1.0 1.0 1.0

1.0 30 10 4

1.0 1.0 1.0 1.0

1.0
1.0
1.0
1.0

1.0

Rule2: Cl=+ « Cond3 AND Cond4
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Subgroup Discovery

Positive examples Negative examples

1l0 1-0 1 o

1.0 ;0 1.0 49

1.0 1.0 ;4 10

1.0
1.0
1.0
1.0

1.0



CN2-SD: Weighted WRAcc Search

Heuristic

« Weighted relative accuracy (WRAcc) search
heuristics, with added example weights
WRAcc(Cl «— Cond) = p(Cond) (p(Cl|Cond) - p(Cl))

Increased coverage, decreased # of rules, approx. equal
accuracy (PKDD-2000)

* In WRAcc computation, probabilities are estimated
with relative frequencies, adapt:

WRACcc(Cl « Cond) = p(Cond) (p(Cl|Cond) - p(Cl)) =
n’(Cond)/N’ ( n’(Cl.Cond)/n’(Cond) - n’(CI)/N" )
— N’ : sum of weights of examples

— n’(Cond) : sum of weights of all covered examples
— n’(Cl.Cond) : sum of weights of all correctly covered examples



SD algorithms in the Orange DM
Platform

* Orange data mining toolkit
— classification and subgroup
discovery algorithms
— data mining workflows

— visualization

D_fibr=>4 20 ecghlv=na -+ class=emb
D_chol=c=6.90 D_fibr=>4.20 hypo=no -> class=emb
[_age=366.00 fthiz=pes -» class=emb

(163 [_age=»B6.00 D_chol=<=6.90 > class=emb

« SD Algorithms in Orange
= SD (Gamberger & Lavrac, JAIR 2002)
= Apriori-SD (Kavsek & Lavrac, AAlI 2006)
= CN2-SD (Lavrac et al., IMLR 2004): Adapting CN2
classification rule learner to Subgroup Discovery
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Part IV. Descriptive DM technigues

* Predictive vs. descriptive induction
» Subgroup discovery

_>- Association rule learning
» Hierarchical clustering
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Association Rule Learning

Rules: X =>Y, iIf XthenY

X and Y are itemsets (records, conjunction of items),
where items/features are binary-valued attributes)

Given: Transactions 102 e, i50
itemsets (records) 1 1 1 0
t2 O 1 0

Find: A set of association rules in the form X =>Y
Example: Market basket analysis
beer & coke => peanuts & chips (0.05, 0.65)

e Support: Sup(X,Y) = #XY/#D = p(XY)
» Confidence: Conf(X,Y) = #XY/#X = Sup(X,Y)/Sup(X) =
= p(XY)/p(X) = p(Y[X)
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Association Rule Learning:
Examples

« Market basket analysis
— beer & coke = peanuts & chips (5%, 65%)
(IF beer AND coke THEN peanuts AND chips)
— Support 5%: 5% of all customers buy all four items

— Confidence 65%: 65% of customers that buy beer
and coke also buy peanuts and chips

* |nsurance
— mortgage & loans & savings = insurance (2%,
62%)
— Support 2%: 2% of all customers have all four

— Confidence 62%: 62% of all customers that have
mortgage, loan and savings also have insurance



Recall: Survey data

Classification rule learning

Education Marital Status Sex Has Children | Approved
primary single male no no
primary single male yes no
primary married male no yes
university divorced female no yes
university married female yes yes
secondary single male no no
university single female no yes
secondary divorced female no yes
secondary single female yes yes
secondary married male yes yes
primary married female no yes
secondary divorced male yes no
university divorced female yes no
secondary divorced male no yes

LI
AND
THEN
IF
AMND
THEN

=
i
=

ANC
THEMN

IF
AN
THEN

MaritalStatus

Sex = femal
Approved =

MaritalStat
Sex = male
Approved =

MaritalSta
Approved =

Marital3Stat
HasChildren
Approved =

Maritalstat
HasChildren
Approved =

single
L=
yes

us = single

tus married

yes
us = diveorced
= 5

e}

s = divorced
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yas (219) na (V5]
| |

ves (09) no (35)
| |

veas (4/9) no (095
| |

yes (09) no (2/8)
| |

yes (3/9) no (O/5)




Survey data
LE MaritalStatus single
Education Marital Status Sex Has Children | Approved AND Sex = female yas (2/9) na (0/5)
primary single male no no THEN Approved = yes [ [ |
primary single male yes no
primary married male no yes _ , . \
university divorced female no yes i3 MaritalStatus = single es (0/9 I
university married female yes yes AND Sex = male yes (0/9) no (3/5)
secondary single male no no THEN Approved = no | | |
university single female no yes
secondary div.forced female no yes [F MaritalStatus married ves (4/9) no (VS)
secondary single female yes yes N B | | |
secondary married male yes yes THEN Approve d = ¥es
primary married female no yes
secondary divorced male yes no I[F MaritalStatus = divorced
university divorced female yes no AND HasChildren = yes yes (09) no {2/5)
secondary divorced male no yes "HEN A aved = no | | |
'HEN Approved o
IF MaritalStatus = divorced
AND HasChildren no ves (3/9) no {0/5)
TTEAT M em e e m e o I I |

THEN

1F
THEN

IF
AND

THEN
AND

Education
Sex = female

Approved = no
Sex = male

Education =

MaritalStatus =
s

HasChildren =
Approved = yes

university

support (4/14)

confidence (4/4)

support (4/14)

confidence (4/5)

secondar:

divorced support (2/14)

confidence (2/3)
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Association Rule Learning

Given: a set of transactions D

Find: all association rules that hold on the set of transactions
that have
— user defined minimum support, i.e., support > MinSup, and

— user defined minimum confidence, i.e., confidence > MinConf

It is a form of exploratory data analysis, rather than hypothesis
verification



Searching for the associations

Find all large itemsets

Use the large itemsets to generate
association rules

If XY Is a large itemset, compute
r =support(XY) / support(X)

If r > MinConf, then X = Y holds
(support > MinSup, as XY Is large)
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Large itemsets

e Large itemsets are itemsets that appear in at
least MinSup transaction

« All subsets of a large itemset are large
itemsets (e.qg., If A,B appears In at least
MinSup transactions, so do A and B)

* This observation is the basis for very efficient
algorithms for association rules discovery
(linear in the number of transactions)
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Assoclation vs. Classification

rules

« Exploration of
dependencies

 Different combinations
of dependent and
Independent attributes

 Complete search (all
rules found)

rules

Focused prediction

Predict one attribute
(class) from the others

Heuristic search (subset
of rules found)
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Part IV. Descriptive DM technigues

* Predictive vs. descriptive induction
» Subgroup discovery
* Association rule learning

j>- Hierarchical clustering
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Hierarchical clustering

. Algorlthm (agglomerative ° Dendogram

hierarchical clustering):

| | .
oy M
] ] point
Each instance is a cluster; \
repeat B i R - T

find nearest pair Ciin C;;
fuse Ciin Cj in a new cluster |::>
C=CU Cj;

determine dissimilarities between
C: and other clusters;

until one cluster left; I——‘ ‘
M |J'| M| v

of OF O3 04 O5 OF OF O8 O 0D O11 012 013 014

cluster level




Hierarchical clustering

* Fusing the nearest pair of clusters
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m\ * Minimizing intra-cluster

d(C.C L
€8 similarity
d(C;.C Cc | » Maximizing inter-cluster
similarity
d(C;,Cy)

« Computing the dissimilaritiesﬁ

from the “new” cluster
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Hierarchical clustering: example

X Y Z W V xy) z w v
M
x| 0(1)1 5 58 (xy)| 0 141 5 566
AEREEEE=ETS “‘"T‘"T Yy 0 141424 5 z 0 441 5
=+ |
1 Lo z 0 4471 5 w 0 @
Tl 0 iy 0 v :
| e O > v 0
0% 4
a) sample problem b) dissimilarity matrix c) dissimilarity matrix after 'fusing’
elements X and y
{x,y) Z [w,") {x,'f,Z) {wsl“) B e — e +6 566
+5
xy)| o 5.66 xy2| o at || -
0 5 T3
z (w:“] D = 2
(w,v) 0 | smetes e et s et st i L
1 ___E__;[’____U

d) dissimilarity matrix after fusing' e) dissimilarity matrix after f) dendrogram
elements w and v fusing' cluster (x,y) and
element z
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Results of clustering

Ptah - [Clustering of Samples] s A dendogram Of
=| File Analyses Graph Options Window Help = resistance vectors
v P8 I S T T (==
Antibiotics: {BETAL),AM,CB,CC,CFP,CIP,CIX,CPM,CT,GM,MET,NET,P [Bohanec et al., “PTAH:
Bacterium: 110 STAPHYLOCOCCUS AUREUS ’ .
1 . oz A system for supporting
i B m R | nosocomial infection
L E...E — therapy”, IDAMAP
3 _.E.__ .. E.._ER
A . & book, 1997]
1 ... .. E._.._.. B l
1 B —'_I -
: T _
1 .. ... ... B_. .. —
1 E_ERE_RE. _E
1 E E. . RE. _E
1 E_ERE BRE B :I—‘i |
3 E_E _RE ]
2 ... EE. B [ |
1 ... .. E_ERE B
2 _...E.E.RE._.E N s
1 .. k... .. RE
3 _..E.RE_E_R. B
- g rEEE ®
2 ..E.E.E.R. .
. rermoEm
Trne m —

From: 1-1-94 To: 3-3-95 Samples: ¥9 Antibiotics: 13 Bacteria; 1
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Course Qutline

l. Introduction 1. Predictive DM
Data Mining and KDD process Regression
Introduction to Data Mining

« Data Mining platforms

I\VV. Descriptive DM

Il. Predictive DM « Predictive vs. descriptive
« Decision Tree learning induction

. Bayesian classifier * Subgroup discovery

« Classification rule learning * Association rule learning

« Classifier evaluation « Hierarchical clustering



