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Data and Text Mining: 

ICT2 Credits, Supporting material

• 20 credits 

– 8 credits Nada Lavrač and Petra Kralj Novak

– 4 credits Bojan Cestnik

– 8 credits Dunja Mladenić

• Supporting material on videolectures.net: 

Seminar: AI for Industry and Society, Ljubljana 2020 

– http://videolectures.net/AIindustrySeminar2019/

– Marko Robnik Šikonja: Artificial Intelligence: Techniques, Trends 

and Applications

– Nada Lavrač: Data Science, Machine Learning and Big Data: 

Current trends

– Blaž Zupan: Data Science with the OrangeToolbox

– Dunja Mladenić: Text Mining Applications for Industry

http://videolectures.net/AIindustrySeminar2019/
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Data Mining: MSc Credits and Coursework 

for Data mining part

Requirements for Data Mining part by Nada Lavrač

and Petra Kralj Novak (8 ECTS credits):

• Attending lectures

• Attending practical exercises 

– Theory exercises and hands-on (intro to Orange DM 

toolbox by dr. Petra Kralj Novak)

• Oral exam (40%) 

• Seminar (60%):

– Data analysis of your own data (e.g., using Orange for 

questionnaire data analysis)

– …. own initiatives are welcome …
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Data Mining: MSc Credits and coursework

Exam: Oral exam - Theory 

Seminar: topic selection + results presentation

• One hour available for seminar topic discussion – one page 

written proposal defining the task and the selected dataset

• Deliver written report + electronic copy (4 pages in 

Information Society paper format, instructions on the web) 

– Report on data analysis of own data needs to follow the  

CRISP-DM methodology

– Presentation of your seminar results (15 minutes each: 10 

minutes presentation + 5 minutes discussion)
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Course Outline

I. Introduction
• Data Mining and KDD process

• Introduction to Data Mining 

• Data Mining platforms

II. Predictive DM 
• Decision Tree learning

• Bayesian classifier 

• Classification rule learning

• Classifier evaluation 

III. Predictive DM

• Regression

IV. Descriptive DM
• Predictive vs. descriptive 

induction

• Subgroup discovery

• Association rule learning

• Hierarchical clustering



8

Part I. Introduction

• Data Mining and the KDD process

• Introduction to Data Mining 

• Data Mining platforms



Machine Learning and Data Mining

• Machine Learning (ML) – computer 

algorithms/machines that learn predictive 

models from class-labeled data

• Data Mining (DM) – extraction of useful 

information from data: discovering 

relationships and patterns that have not 

previously been known, and use of ML

techniques applied to solving real-life data 

analysis problems

• Knowledge discovery in databases (KDD) –

the process of knowledge discovery

9



10

Data Mining and KDD

• Buzzword since 1996

• KDD is defined as “the process of identifying 
valid, novel, potentially useful and ultimately 
understandable models/patterns in data.” *

• Data Mining (DM) is the key step in the KDD 
process, performed by using data mining 
techniques for extracting models or interesting 
patterns from the data. 

Usama M. Fayyad, Gregory Piatesky-Shapiro, Pedhraic Smyth: The KDD Process for Extracting 
Useful Knowledge form Volumes of Data. Comm ACM, Nov 96/Vol 39 No 11
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KDD Process: CRISP-DM

KDD process of discovering useful knowledge from data

• KDD process involves several phases:

• data preparation

• data mining (machine learning, statistics)

• evaluation and use of discovered patterns

• Data mining is the key step, but represents only 
15%-25% of the entire KDD process
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Big Data

• Big Data – Buzzword since 2008 (special 

issue of Nature on Big Data)

– data and techniques for dealing with very 

large volumes of data, possibly dynamic 

data streams

– requiring large data storage resources, 

special algorithms for parallel computing 

architectures.



The 4 Vs of Big Data

13
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Data Science

• Data Science – buzzword since 2012 when 

Harvard Business Review called it "The 

Sexiest Job of the 21st Century"

– an interdisciplinary field that uses scientific 

methods, processes, algorithms and 

systems to extract knowledge and insights 

from data in various forms, both structured 

and unstructured, similar to data mining. 

– used interchangeably with earlier concepts 

like business analytics, business 

intelligence, predictive modeling, and 

statistics.
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Machine Learning and Data Mining

data

Machine Learning

Data Mining

knowledge discovery 

from data

model, patterns, …

Given: class labeled data

Find: a classification model, a set of interesting patterns 

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE

data
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Machine Learning and Data Mining

data

Machine Learning

Data Mining

knowledge discovery 

from data

model, patterns, …

Given: class labeled data

Find: a classification model, a set of interesting patterns 

new unclassified instance classified  instance

black box classifier 

no explanation

symbolic model  

symbolic patterns 

explanation

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE

data



Why learn and use black-box models

Given: the learned classification model

(e.g, a linear classifier, a deep neural network, …)

Find: - the class label for a new unlabeled instance

Advantages: 

- best classification results in image recognition 

and other complex classification tasks

Drawbacks: 

- poor interpretability of results

- can not be used for pattern analysis

classified  instancenew unclassified instance



Why learn and use symbolic models

Given: the learned classification model

(a decision tree or a set of rules)

Find: - the class label for a new unlabeled instance

Advantages: 

- use the model for the explanation of classifications of 

new data instances

- use the discovered patterns for data exploration

Drawbacks: 

- lower accuracy than deep NNs

classified  instancenew unclassified instance
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Simplified example: Learning a classification 

model from contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE
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Pattern discovery in Contact lens data

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE

IF  

Tear prod. = 

reduced  

THEN   

Lenses = 

NONE 

PATTERN

Rule:
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Learning a classification model from 

contact lens data
Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NONE

O2 young myope no normal  SOFT

O3 young myope yes reduced NONE

O4 young myope yes normal HARD

O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal SOFT

O15 pre-presbyohypermetrope yes reduced NONE

O16 pre-presbyohypermetrope yes normal NONE

O17 presbyopic myope no reduced NONE

O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NONE

Data Mining



Decision tree classification model 

learned from contact lens data

nodes: attributes

arcs: values of attributes

leaves: classes



Learning a decision tree classification 

model

)()(),(
)(

vv

AValuesv

SEpSEASGain  


Using Gain(S,A) heuristic for determining the most 

informative attribute 

Gain(S,A) estimates the reduction of entropy of set S after 

splitting into subsets based on values of attribute A
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Heuristics for estimating the 

informativity of attributes and features

• Search heuristics: Which attribute to test at each node in the tree ? 
The attribute that is most useful for classifying examples. 

• Define a statistical property, called information gain, measuring how 
well a given attribute separates the training examples w.r.t their target 
classification. 

• First define a measure commonly used in information theory, called 
entropy, to characterize the (im)purity of an arbitrary collection of 
examples, and Informativity of an attribute merimois measured as 
reduction of entropy of a training set

• Entropy: E(S) = - p+ log2p+ - p- log2p-

• Most informative attribute:

– Select S

– Select A to split S into S1,S2, …,Sv

– Select A, which maximizes info. Gain

max Gain(S,A)
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||

||
)(),(

)(

v

AValuesv

v SE
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Learning a classification model

from contact lens data

Data Mining

lenses=NONE ← tear production=reduced 

lenses=NONE ← tear production=normal AND astigmatism=yes AND

spect. pre.=hypermetrope

lenses=SOFT ← tear production=normal AND astigmatism=no 

lenses=HARD ← tear production=normal AND astigmatism=yes AND

spect. pre.=myope 

lenses=NONE ←

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE



Classification rules model learned

from contact lens data

lenses=NONE ← tear production=reduced 

lenses=NONE ← tear production=normal AND 

astigmatism=yes AND

spect. pre.=hypermetrope

lenses=SOFT ← tear production=normal AND 

astigmatism=no 

lenses=HARD ← tear production=normal AND 

astigmatism=yes AND

spect. pre.=myope 

lenses=NONE ←
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Learning from Unlabeled Data

Unlabeled data - clustering: grouping of similar instances 

- association rule learning

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NONE

O2 23 myope no normal  SOFT

O3 22 myope yes reduced NONE

O4 27 myope yes normal HARD

O5 19 hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal SOFT

O15 43 hypermetrope yes reduced NONE

O16 39 hypermetrope yes normal NONE

O17 54 myope no reduced NONE

O18 62 myope no normal NONE

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NONE



28

Learning from Numeric Class Data

Numeric class values – regression analysis

Person Age Spect. presc. Astigm. Tear prod. LensPrice

O1 17 myope no reduced 0

O2 23 myope no normal  8

O3 22 myope yes reduced 0

O4 27 myope yes normal 5

O5 19 hypermetrope no reduced 0

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal 5

O15 43 hypermetrope yes reduced 0

O16 39 hypermetrope yes normal 0

O17 54 myope no reduced 0

O18 62 myope no normal 0

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal 0
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Task reformulation: Binary Class Values

Binary classes (positive vs. negative examples of Target class) 

- for Concept learning – classification and class description 

- for Subgroup discovery – exploring patterns 

characterizing groups of instances of target class

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NO

O2 23 myope no normal  YES

O3 22 myope yes reduced NO

O4 27 myope yes normal YES

O5 19 hypermetrope no reduced NO

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal YES

O15 43 hypermetrope yes reduced NO

O16 39 hypermetrope yes normal NO

O17 54 myope no reduced NO

O18 62 myope no normal NO

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NO



Task reformulation: Binary Class and 

Feature Values

Person Young Myope Astigm. Reuced tear Lenses

O1 1 1 0 1 NO

O2 1 1 0 0 YES

O3 1 1 1 1 NO

O4 1 1 1 0 YES

O5 1 0 0 1 NO

O6-O13 ... ... ... ... ...

O14 0 0 0 0 YES

O15 0 0 1 1 NO

O16 0 0 1 0 NO

O17 0 1 0 1 NO

O18 0 1 0 0 NO

O19-O23 ... ... ... ... ...

O24 0 0 1 0 NO

Binary features and class values



First Generation Data Mining

• First machine learning algorithms for 

– Decision tree and rule learning in 1970s and early 1980s 

by Quinlan, Michalski et al., Breiman et al., …

• Characterized by

– Learning from data stored in a single data table

– Relatively small set of instances and attributes

• Lots of ML research followed in 1980s 

– Numerous conferences ICML, ECML, … and ML 

sessions at AI conferences IJCAI, ECAI, AAAI, …

– Extended set of learning tasks and algorithms 

addressed



Second Generation Data Mining

• Developed since 1990s:
– Focused on data mining tasks characterized by large 

datasets described by large numbers of attributes 

– Industrial standard: CRISP-DM methodology (1997)



Second Generation Data Mining

• Developed since 1990s:
– Focused on data mining tasks characterized by large 

datasets described by large numbers of attributes 

– Industrial standard: CRISP-DM methodology (1997)

– New conferences on practical aspects of data mining 
and knowledge discovery: KDD, PKDD, …

– New learning tasks and efficient learning algorithms:
• Learning predictive models: Bayesian network learning,, 

relational data mining, statistical relational learning, SVMs, …

• Learning descriptive patterns: association rule learning, 
subgroup discovery, …



MEDIANA – analysis of media research data

• Questionnaires about journal/magazine reading, watching 
of TV programs and listening of radio programs, about 1200 
questions. Yearly publication: frequency of 
reading/listening/watching, distribution w.r.t. Sex, Age, 
Education, Buying power,..

• Data about 8000 questionnaires, covering lifestyle, spare 
time activities, personal viewpoints, 
reading/listening/watching of media (yes/no/how much), 
interest for specific topics in media, social status

• good quality, “clean” data

• table of n-tuples (rows: individuals, columns: attributes, in 
classification tasks selected class)



MEDIANA – media research pilot study

• Patterns uncovering regularities concerning:

– Which other journals/magazines are read by readers of 
a particular journal/magazine ?

– What are the properties of individuals that are 
consumers of a particular media offer ?

– Which properties are distinctive for readers of different 
journals ?

• Induced models: description (association rules, clusters) 
and classification (decision trees, classification rules)



Simplified association rules

Finding profiles of readers of the Delo daily 

newspaper

1. reads_Marketing_magazine  116 

reads_Delo 95 (0.82)

2. reads_Finance 223  reads_Delo 180 (0.81)

3. reads_Views 201  reads_Delo 157 (0.78)

4. reads_Money 197  reads_Delo 150 (0.76)

5. reads_Vip  181  reads_Delo 134 (0.74)

Interpretation: Most readers of Marketing magazine, 

Finance, Views, Money and Vip read also Delo.



Simplified association rules

1. reads_Sara 332  reads_Slovenian_news 211 (0.64)

2. reads_Love_stories 283 

reads_Slovenian_news 174 (0.61)

3. reads_Dolenjska_news 520 

reads_Slovenian_news 310 (0.6)

4. reads_Omama 154  reads_Slovenian_news 90 (0.58)

5. reads_Workers_news 177 

reads_Slovenian_news 102 (0.58)

Most of the readers of Sara, Love stories, Dolenjska 

news, Omama in Workers news read also 

Slovenian news.



Simplified association rules

1. reads_Sports_news 303 

reads_Slovenian_shareholders_magazine 164 (0.54)

2. reads_Sports_news 303 

reads_Salomon_advertisemens 155 (0.51)

3. reads_Sports_news 303 

reads_Lady 152 (0.5)

More than half of readers of Sports news reads also

Slovenian shareholders magazine, Solomon 

advertisements and Lady.



Second Generation Data Mining 

Platforms

Orange, WEKA, KNIME, RapidMiner, …

– include numerous data mining algorithms

– enable data and model visualization

– like Orange, Taverna, WEKA, KNIME, RapidMiner,  

also enable complex workflow construction 



Data Mining Workflows for 

Open Data Science

– Workflows are executable visual representations of 

procedures

– divided into smaller chunks of code (components) 

– organized as sequences of connected components.

– Suitable for representing complex scientific pipelines

– by explicitly modeling dependencies of components

– Building scientific workflows consists of simple operations on 

workflow elements (drag, drop, connect), suitable for non-

experts

40



Third Generation Data Mining

• Developed since 2010s:
– Focused on big data analytics

– Addressing complex data mining tasks and scenarios

– New conferences on data science and big data 
analytics; e.g., IEEE Big Data, Complex networks, …

– New learning tasks and efficient learning algorithms:
• Analysis of dynamic data streams, Network analysis, Text 

mining, Semantic data analysis, …

– Lots of emphasis on automated data transformation
• Propositionalization of relational data, of heterogeneous 

information networks, …

• Embedding of texts, networks, knowledge graphs, entities 
(features), … is highly popular in the last few years

41
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Propositionalization: 

Data transformation for Relational Data Mining

Propositionalization

model, patterns, …

Data Mining

Step 1

Step 2



Bag-of-Words Data Transformation for 

Text mining

BoW vector construction

model, patterns, clusters, 

…

Data Mining

Step 1

Step 2

1. BoW features 

construction

2. Table of BoW vectors 

construction

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO



Text mining: 

Words/terms as binary features

Instances = documents

Words and terms = Binary features

Document Word1 Word2 … WordN Class

d1 1 1 0 1 NO

d2 1 1 0 0 YES

d3 1 1 1 1 NO

d4 1 1 1 0 YES

d5 1 0 0 1 NO

d6-d13 ... ... ... ... ...

d14 0 0 0 0 YES

d15 0 0 1 1 NO

d16 0 0 1 0 NO

d17 0 1 0 1 NO

d18 0 1 0 0 NO

d19-d23 ... ... ... ... ...

d24 0 0 1 0 NO



Bag-of-Words document 

representation



Word weighting for BoW document 

representation 

• In bag-of-words representation each word is represented 
as a separate variable having numeric weight.

• The most popular weighting schema is normalized word 
frequency TFIDF:

– Tf(w) – term frequency (number of word occurrences in a 
document)

– Df(w) – document frequency (number of documents containing the 
word)

– N – number of all documents

– Tfidf(w) – relative importance of the word in the document

)
)(

log(.)(
wdf

N
tfwtfidf 

The word is more important if it appears 
several times in a target document

The word is more important if it 
appears in less documents



Embeddings-based  Data Transformations

• Embedding networks, knowledge graphs, relational data, 
entities (features), texts …

• Transforming data by projecting individual data instances into 
vectors (rows of a data table) – dense data representation

• Weights correspond to weights in the embedding layer of a 
neural network

47



Embedding-based  Data Transformation 
for Text mining

• Corpus embedding, Document embedding, Sentence embedding, 
word embedding, …

• Representations of word meaning obtained from corpus statistics

• Spatial relationships correspond to linguistic relationships

48



Third Generation Data Mining Platforms

• Orange4WS (Podpečan et al. 2009), ClowdFlows (Kranjc et 

al. 2012) and TextFlows (Perovšek et al. 2016)

– are service oriented (DM algorithms as web services)

– user-friendly HCI: canvas for workflow construction

– include functionality of standard data mining platforms

• WEKA algorithms, implemented as Web services

– Include new functionality

• relational data mining

• semantic data mining

• NLP processing and text mining

– enable simplified construction of Web services from 

available algorithms

– ClowdFlows and TextFlows run in a browser – enables 

data mining, workflow construction and sharing on the web



ClowdFlows platform

• Large algorithm repository

– Relational data mining 

– All Orange algorithms

– WEKA algorithms as web services

– Data and results visualization

– Text analysis

– Social network analysis

– Analysis of big data streams

• Large workflow repository

– Enables access to our 

technology heritage



ClowdFlows platform

• Large repository of algorithms

• Large repository of workflows

Example workflow: 

Propositionalization with RSD 

available in ClowdFlows at 

http://clowdflows.org/workflow/611/



TextFlows

• Motivation: 

– Develop an online text mining platform for 

composition, execution and sharing of text mining 

workflows

• TextFlows platform – fork of ClowdFlows.org:

– Specialized on text mining

– Web-based user interface

– Visual programming

– Big roster of existing workflow (mostly text mining) 

components

– Cloud-based service-oriented architecture



“Big Data” Use Case

• Real-time analysis of big data streams

• Example: semantic graph construction from news 

streams. http://clowdflows.org/workflow/1729/.

• Example: news monitoring by graph

visualization (graph of CNN RSS feeds)

http://clowdflows.org/streams/data/31/15524/.
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Part I: Summary

• KDD is the overall process of discovering useful 

knowledge in data

– many steps including data preparation, cleaning, 

transformation, pre-processing

• Data Mining is the data analysis phase in KDD

– DM takes only 15%-25% of the effort of the overall KDD 

process

– employing techniques from machine learning and statistics

• Predictive and descriptive induction have different 

goals: classifier vs. pattern discovery

• Many application areas, many powerful tools 

available



Summary of types of learning tasks

• Supervised learning vs. Unsupervised learning = Learning from 
Labeled vs. Learning from Unlabeled data, i.e. depending whether 
the data includes class labels for a predefined target class attribute or 
not.

• Prediction (classification, predictive modeling, classifier learning) -
learning classifiers from class labeled data, e.g., decision tree learning

• Concept learning – learning classifiers for a preselected target class 
from binary labeled data

• Regression – learning classifiers from data with numeric class labels

• Multi-label prediction - learning classifiers from data labeled by several 
target class attributes

• Description (descriptive pattern mining) - learning individual 
rules/patterns, describing properties of parts of the data set, e.g. 
association rule learning

• Subgroup discovery – combining supervised learning from class 
labeled data and descriptive pattern mining

• Clustering – grouping of unlabeled data, based on data similarity

55
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Technical paper outline

Book: Foundations of Rule Learning

Publisher: Springer, 2012

Authors: J. Fuernkranz, D. Gamberger and N. Lavrač

Chapter: Machine Learning and Data Mining
1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . … . . . . .. ... . 1

1.2 Historical background . . . . . . . . . . . . . . …. . . . . . ... . 3

1.3 Knowledge discovery process and standardization .. 4

1.4 Terminology and categorization of learning tasks . .. . 6

1.5 Predictive data mining: Induction of models . . . . .. .. . 8

1.6 Descriptive data mining: Induction of patterns . . .. . . 13

1.7 Relational data mining . . . . . . . . . . . . . . .. . . . . . . . . 15
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Course Outline

I. Introduction
• Data Mining and KDD process

• Introduction to Data Mining 

• Data Mining platforms

II. Predictive DM 
• Decision Tree learning

• Bayesian classifier 

• Classification rule learning

• Classifier evaluation 

III. Predictive DM

• Regression

IV. Descriptive DM
• Predictive vs. descriptive 

induction

• Subgroup discovery

• Association rule learning

• Hierarchical clustering
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Part II. Predictive DM techniques

• Decision tree learning

• Bayesian Classifier

• Rule learning

• Evaluation
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Predictive DM - Classification

• data are objects, characterized with attributes -

they belong to different classes (discrete labels)

• given objects described with attribute values, 

induce a model to predict different classes

• decision trees, if-then rules, discriminant 

analysis, ...
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Predictive DM - classification  

formulated as a machine learning task

• Given a set of labeled training examples (n-tuples of 
attribute values, labeled by class name) 

A1        A2        A3         Class

example1     v1,1 v1,2           v1,3                C1

example2     v2,1 v2,2           v2,3                C2

. . 

• Performing generalization from examples (induction) 

• Find a hypothesis (a decision tree or classification rules) 
which explains the training examples, e.g. decision trees 
or classification rules of the form:

IF (Ai = vi,k) & (Aj = vj,l) & ... THEN Class = Cn 
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Decision Tree Learning 

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NONE

O2 young myope no normal  SOFT

O3 young myope yes reduced NONE

O4 young myope yes normal HARD

O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal SOFT

O15 pre-presbyohypermetrope yes reduced NONE

O16 pre-presbyohypermetrope yes normal NONE

O17 presbyopic myope no reduced NONE

O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NONE

Data Mining



Decision Tree classifier
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Decision tree learning algorithm

• ID3 (Quinlan 1979), CART (Breiman et al. 1984), C4.5, 

J48 in WEKA, ...

– create the root node of the tree

– if all examples from S belong to the same class Cj

• then label the root with Cj

– else

• select the ‘most informative’ attribute A with values 

v1, v2, … vn

• divide training set S into S1,… , Sn according to 

values v1,…,vn

• recursively build sub-trees

T1,…,Tn for S1,…,Sn

A

...

...T1 Tn

vnv1
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Decision tree search heuristics

• Central choice in decision tree algorithms: Which 
attribute to test at each node in the tree ? The 
attribute that is most useful for classifying 
examples. 

• Define a statistical property, called information 
gain, measuring how well a given attribute 
separates the training examples w.r.t their target 
classification.

• First define a measure commonly used in 
information theory, called entropy, to characterize 
the (im)purity of an arbitrary collection of examples.
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Entropy

• S - training set, C1,...,CN - classes

• Entropy E(S) – measure of the impurity of 
training set S





N

c

cc ppSE
1

2log.)( pc - prior probability of class Cc 

(relative frequency of Cc in S)

E(S) = - p+ log2p+ - p- log2p-

• Entropy in binary classification problems 
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Entropy

• E(S) = - p+ log2p+ - p- log2p-

• The entropy function relative to a Boolean 

classification, as the proportion p+ of positive 

examples varies between 0  and 1

0
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Entropy – why ?

• Entropy E(S) = expected amount of information (in 

bits) needed to assign a class to a randomly drawn 

object in S (under the optimal, shortest-length 

code)

• Why ?

• Information theory: optimal length code assigns      

- log2p bits to a message having probability p

• So, in binary classification problems, the expected 

number of bits to encode + or – of a random 

member of S is:

p+ ( - log2p+ ) + p- ( - log2p- ) = - p+ log2p+  - p- log2p-
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Binary classification problem: 
Survey data
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Entropy – example calculation

• Training set S: 14 examples (9 pos., 5 neg.)

• Notation: S = [9+, 5-] 

• E(S) = - p+ log2p+ - p- log2p-

• Computing entropy, if probability is estimated by 
relative frequency

• E([9+,5-]) = - (9/14) log2(9/14) - (5/14) log2(5/14)        

= 0.940 
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Survey data: Entropy

• E(S) = - p+ log2p+ - p- log2p-

• E(9+,5-) = -(9/14) log2(9/14) - (5/14) log2(5/14) = 0.940 

Marital status ?

{e1,e2,e6,e7,e9}       [2+, 3-]   E=0.970  

{e3,e5,e10,e11}          [4+, 0-]   E=0

{e4,e8,e12,e13, e14}     [3+, 2-]   E=0.970  

single

married

divorced

Sex ?

[3+, 4-]    E=0.985 

[6+, 1-]    E=0.592

male

female

Has children ?

[6+, 2-]    E=0.811  

[3+, 3-]    E=1.00

no

yes
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Information gain 

search heuristic

• Information gain measure is aimed to minimize the 

number of tests needed for the classification of a new 

object

• Gain(S,A) – expected reduction in entropy of S due to 

sorting on A 

• Most informative attribute: max Gain(S,A)

)(
||

||
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
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Information gain 

search heuristic

• Which attribute is more informative, A1 or A2 ?

• Gain(S,A1) = 0.94 – (8/14 x 0.811 + 6/14 x 1.00) = 0.048

• Gain(S,A2) = 0.94 – 0 = 0.94                 A2 has max Gain

A1

[9,5],  E  0.94 

[3, 3][6, 2]

E0.811 E1.00

A2

[0, 5][9, 0]

E0.0 E0.0

[9,5],  E  0.94 
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Survey data: Information gain

• Values(Has children) = {no, yes}

– S = [9+,5-],  E(S) = 0.940

– Sno   = [6+,2-], E(Sno ) = 0.811

– Syes = [3+,3-], E(Syes ) = 1.0

– Gain(S, Has children) = E(S) - (8/14)E(Sno) - (6/14)E(Syes) = 

0.940 - (8/14)x0.811 - (6/14)x1.0=0.048
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Has children ?

[6+, 2-]    E=0.811  

[3+, 3-]    E=1.00

no

yes
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Survey data: Information gain

• Which attribute is the best?

– Gain(S, Marital status)=0.246        MAX  !

– Gain(S, Sex)=0.151

– Gain(S, Has children)=0.048

– Gain(S, Education)=0.029
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Survey data: Information gain

• Which attribute should be tested here?

– Gain(Ssunny, Sex) = 0.97-(3/5)0-(2/5)0 = 0.970    MAX  !

– Gain(Ssunny,Has children) = 0.97-(2/5)0-(2/5)1-(1/5)0 = 0.570

– Gain(Ssunny,Education) = 0.97-(2/5)1-(3/5)0.918 = 0.019

Marital
status ?

{D1,D2,D8,D9,D11}     [2+, 3-]   E > 0  ???

{D3,D7,D12,D13}        [4+, 0-]   E = 0  OK - assign class Yes
divorced

married

{D4,D5,D6,D10,D14}   [3+, 2-]   E > 0 ???single
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Probability estimates

• Relative frequency :
– problems with small samples

• Laplace estimate : 
– assumes uniform prior 

distribution of k classes
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[2+,0-] (2) = 2/2 = 1

[6+,1-] (7) = 6+1 / 7+2 = 7/9

[2+,0-] (2) = 2+1 / 2+2 = 3/4
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Heuristic search in ID3

• Search bias: Search the space of decision trees 
from simplest to increasingly complex (greedy 
search, no backtracking, prefer small trees)

• Search heuristics: At a node, select the attribute 
that is most useful for classifying examples, split 
the node accordingly

• Stopping criteria: A node becomes a leaf

– if all examples belong to same class Cj, label the 
leaf with Cj

– if all attributes were used, label the leaf with the 
most common value Ck of examples in the node

• Extension to ID3: handling noise - tree pruning 



78

Pruning of decision trees

• Avoid overfitting the data by tree pruning

• Pruned trees are
– less accurate on training data

– more accurate when classifying unseen data
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Handling noise – Tree pruning

Sources of imperfection

1.  Random errors (noise) in training examples

• erroneous attribute values

• erroneous classification

2. Too sparse training examples (incompleteness)

3.  Inappropriate/insufficient set of attributes (inexactness)

4. Missing attribute values in training examples
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Handling noise – Tree pruning 

• Handling imperfect data 

– handling imperfections of type 1-3

• pre-pruning (stopping criteria)

• post-pruning / rule truncation

– handling missing values

• Pruning avoids perfectly fitting noisy data: relaxing 

the completeness (fitting all +) and consistency (fitting 

all -) criteria in ID3
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Prediction of breast cancer recurrence: 

Tree pruning
Degree_of_malig

Tumor_size

Age no_recur 125
recurrence 39

no_recur 4
recurrence 1 no_recur 4

Involved_nodes

no_recur 30
recurrence 18

no_recur 27
recurrence 10

< 3  3

< 15  15 < 3  3

< 40 40

no_rec 4      rec1
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Pruned decision tree for

contact lenses recommendation

tear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT

myope

HARD

[N=12,S+H=0]

[N=2, S+H=1]

[S=5,H+N=1]

[H=3,S+N=2]



83

Accuracy and error

• Accuracy: percentage of correct classifications

– on the training set

– on unseen instances

• How accurate is a decision tree when classifying unseen 

instances

– An estimate of accuracy on unseen instances can be computed, 

e.g., by averaging over 4 runs:

• split the example set into training set (e.g. 70%) and test set (e.g. 30%) 

• induce a decision tree from training set, compute its  accuracy on test 

set

• Error = 1 - Accuracy

• High error may indicate data overfitting
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Overfitting and accuracy

• Typical relation between tree size and accuracy

• Question: how to prune optimally?

0.5
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Avoiding overfitting

• How can we avoid overfitting?
– Pre-pruning (forward pruning): stop growing the tree e.g., 

when data split not statistically significant or too few 
examples are in a split

– Post-pruning: grow full tree, then post-prune

• forward pruning considered inferior (myopic)

• post pruning makes use of sub trees 

Pre-pruning

Post-pruning
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Selected decision/regression 

tree learners

• Decision tree learners

– ID3 (Quinlan 1979)

– CART (Breiman et al. 1984)

– Assistant (Cestnik et al. 1987)

– C4.5 (Quinlan 1993), C5 (See5, Quinlan)

– J48 (available in WEKA), Tree (in Orange)

• Regression tree learners, model tree learners

– M5, M5P (implemented in WEKA), Tree (in Orange)
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Selected decision tree learners

• Decision tree learners: Tree (in Orange)
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Selected decision tree learners

• Homework

– To prepare for the lecture of Petra Kralj Novak on Nov. 

11, 2020 on using Tree software in Orange

– See Blaž Zupan: Data Science with the OrangeToolbox

http://videolectures.net/AIindustrySeminar2019_zupan_data_science/

http://videolectures.net/AIindustrySeminar2019_zupan_data_science/
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Features of C4.5 and J48

• Implemented as part of the WEKA data mining 

workbench

• Handling noisy data: post-pruning

• Handling incompletely specified training 

instances: ‘unknown’ values (?)

– in learning assign conditional probability of value v: 

p(v|C) = p(vC) / p(C)

– in classification: follow all branches, weighted by 

prior prob. of missing attribute values
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Other features of C4.5

• Binarization of attribute values
– for continuous values select a boundary value 

maximally increasing the informativity of the 
attribute: sort the values and try every possible 
split (done automaticaly)

– for discrete values try grouping the values until 
two groups remain *

• ‘Majority’ classification in NULL leaf (with no 
corresponding training example)
– if an example ‘falls’ into a NULL leaf during 

classification, the class assigned to this example 
is the majority class of the parent of the NULL leaf

* the basic C4.5 doesn’t support binarisation of discrete attributes, it supports grouping
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Appropriate problems for 

decision tree learning

• Classification problems: classify an instance into one 
of a discrete set of possible categories (medical 
diagnosis, classifying loan applicants, …)

• Characteristics:
– instances described by attribute-value pairs       

(discrete or real-valued attributes)

– target function has discrete output values             
(boolean or multi-valued, if real-valued then regression trees)

– disjunctive hypothesis may be required

– training data may be noisy                                     
(classification errors and/or errors in attribute values)

– training data may contain missing attribute values
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Classifier evaluation

• Use of induced models

– discovery of new patterns, new knowledge

– classification of new objects

• Evaluating the quality of induced models

– Accuracy, Error = 1 - Accuracy

– classification accuracy on testing examples = 
percentage of correctly classified instances

• split the example set into training set (e.g. 70%) to 
induce a concept, and test set (e.g. 30%) to test its 
accuracy

• more elaborate strategies: 10-fold cross validation, 
leave-one-out, ...

– comprehensibility (compactness)

– information contents (information score), significance 
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n-fold cross validation

• A method for accuracy estimation of classifiers

• Partition set D into n disjoint, almost equally-sized 

folds Ti where Ui Ti = D

• for i = 1, ..., n do

– form a training set out of n-1 folds: Di = D\Ti

– induce classifier Hi from examples in Di

– use fold Ti  for testing the accuracy of Hi

• Estimate the accuracy of the classifier by 

averaging accuracies over 10 folds Ti 
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Part II. Predictive DM techniques

• Decision tree learning

• Bayesian Classifier

• Rule learning

• Evaluation
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Bayesian methods

• Bayesian methods – simple but powerful 

classification methods

– Based on Bayesian formula

• Main methods:

– Naive Bayesian classifier

– Semi-naïve Bayesian classifier

– Bayesian networks *

* Out of scope of this course
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Naïve Bayesian classifier

• Probability of class, for given attribute values

• For all Cj compute probability p(Cj), given values vi of all 

attributes describing the example which we want to classify 

(assumption: conditional independence of attributes, when 

estimating p(Cj) and p(Cj |vi))

• Output CMAX with maximal posterior probability of class: 
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Semi-naïve Bayesian classifier

• Naive Bayesian estimation of probabilities 

(reliable)

• Semi-naïve Bayesian estimation of 

probabilities (less reliable)
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Probability estimation

• Relative frequency:

problems with small samples

• Laplace estimate (prior probability): 

assumes uniform prior                   

distribution of k classes
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Probability estimation

• Relative frequency:

• Prior probability: Laplace law

• m-estimate:
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Probability estimation: intuition

• Experiment with N trials, n successful

• Estimate probability of success of next trial 

• Relative frequency: n/N

– reliable estimate when number of trials is large

– Unreliable when number of trials is small, e.g., 
1/1=1

• Laplace: (n+1)/(N+2), (n+1)/(N+k), k classes

– Assumes uniform distribution of classes

• m-estimate: (n+m.pa) /(N+m)

– Prior probability of success pa, parameter m 
(weight of prior probability, i.e., number of ‘virtual’ 
examples )
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Explanation of Bayesian 

classifier

• Based on information theory

– Expected number of bits needed to encode a message = 

optimal code length -log p for a message, whose probability is 

p (*)

• Explanation based of the sum of information gains of 

individual attribute values vi (Kononenko and Bratko 1991, 

Kononenko 1993)

*  log p denotes binary logarithm
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Example of explanation of semi-naïve 

Bayesian classifier

Hip surgery prognosis

Class = no (“no complications”, most probable class, 2 class problem)

Attribute value For decision Against

(bit) (bit)

Age = 70-80 0.07

Sex = Female -0.19

Mobility before injury = Fully mobile 0.04

State of health before injury = Other 0.52

Mechanism of injury = Simple fall -0.08

Additional injuries = None 0

Time between injury and operation > 10 days 0.42

Fracture classification acc. To Garden = Garden III -0.3

Fracture classification acc. To Pauwels = Pauwels III -0.14

Transfusion = Yes 0.07

Antibiotic profilaxies = Yes -0.32

Hospital rehabilitation = Yes 0.05

General complications = None 0

Combination: 0.21

   Time between injury and examination < 6 hours

   AND Hospitalization time between 4 and 5 weeks

Combination: 0.63

 Therapy = Artroplastic AND anticoagulant therapy = Yes
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Visualization of information 

gains for/against Ci
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Naïve Bayesian classifier

• Naïve Bayesian classifier can be used
– when we have sufficient number of training examples 

for reliable probability estimation

• It achieves good classification accuracy

– can be used as ‘gold standard’ for comparison with 

other classifiers

• Resistant to noise (errors)
– Reliable probability estimation

– Uses all available information

• Successful in many application domains

– Web page and document classification 

– Medical diagnosis and prognosis, …
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Improved classification accuracy due 

to using m-estimate

Relative freq. m-estimate

Primary tumor 48.20% 52.50%

Breast cancer 77.40% 79.70%

hepatitis 58.40% 90.00%

lymphography 79.70% 87.70%

Primary Breast thyroid Rheumatology

tumor cancer

#instan 339 288 884 355

#class 22 2 4 6

#attrib 17 10 15 32

#values 2 2.7 9.1 9.1

majority 25% 80% 56% 66%

entropy 3.64 0.72 1.59 1.7
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Part II. Predictive DM techniques

• Decision tree learning

• Bayesian Classifier

• Rule learning

• Evaluation



107

Rule Learning

data

Rule learning

knowledge discovery 

from data

Model: a set of rules

Patterns: individual rules

Given: transaction data table, relational database (a set of 

objects, described by attribute values)

Find: a classification model in the form of a set of rules;

or a set of interesting patterns in the form of individual 

rules 

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 young myope no reduced NONE

O2 young myope no normal  SOFT

O3 young myope yes reduced NONE

O4 young myope yes normal HARD

O5 young hypermetrope no reduced NONE

O6-O13 ... ... ... ... ...

O14 pre-presbyohypermetrope no normal SOFT

O15 pre-presbyohypermetrope yes reduced NONE

O16 pre-presbyohypermetrope yes normal NONE

O17 presbyopic myope no reduced NONE

O18 presbyopic myope no normal NONE

O19-O23 ... ... ... ... ...

O24 presbyopic hypermetrope yes normal NONE
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Rule set representation

• Rule base is a disjunctive set of conjunctive rules

• Standard form of rules:

IF Condition THEN Class

Class IF Conditions

Class  Conditions

• Form of CN2 rules:    

IF Conditions THEN MajClass [ClassDistr]

• Rule base:   {R1, R2, R3, …, DefaultRule}
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Contact lens data: 

Classification rules

Type of task: prediction and classification

Hypothesis language: rules X  C,  if X then C

X conjunction of attribute values, C class

tear production=reduced → lenses=NONE

tear production=normal & astigmatism=yes & 

spect. pre.=hypermetrope → lenses=NONE

tear production=normal & astigmatism=no → lenses=SOFT

tear production=normal & astigmatism=yes & 

spect. pre.=myope → lenses=HARD
DEFAULT lenses=NONE
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Rule learning

• Two rule learning approaches:

– Learn decision tree, convert to rules

– Learn set/list of rules

• Learning an unordered set of rules

• Learning an ordered list of rules

• Heuristics, overfitting, pruning 
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Contact lenses: convert decision tree to  

an unordered rule settear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT

myope

HARD

[N=12,S+H=0]

[N=2, S+H=1]

[S=5,H+N=1]

[H=3,S+N=2]

tear production=reduced => lenses=NONE [S=0,H=0,N=12] 

tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>

lenses=NONE  [S=0,H=1,N=2]

tear production=normal & astigmatism=no => lenses=SOFT [S=5,H=0,N=1]

tear production=normal & astigmatism=yes & spect. pre.=myope => lenses=HARD 

[S=0,H=3,N=2]

DEFAULT lenses=NONE                      Order independent rule set (may overlap)
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Contact lenses: convert decision tree to 

decision listtear prod.

astigmatism

spect. pre.

NONE

NONE

reduced

no yes

normal

hypermetrope

SOFT

myope

HARD

[N=12,S+H=0]

[N=2, S+H=1]

[S=5,H+N=1]

[H=3,S+N=2]

IF tear production=reduced THEN lenses=NONE

ELSE /*tear production=normal*/

IF astigmatism=no THEN lenses=SOFT

ELSE /*astigmatism=yes*/

IF spect. pre.=myope THEN lenses=HARD 

ELSE /* spect.pre.=hypermetrope*/

lenses=NONE                                         Ordered (order dependent) rule list 
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Converting decision tree to rules, and 

rule post-pruning (Quinlan 1993)

• Very frequently used method, e.g., in C4.5

and J48

• Procedure:

– grow a full tree (allowing overfitting)

– convert the tree to an equivalent set of rules

– prune each rule independently of others

– sort final rules into a desired sequence for use
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Concept learning: Task reformulation for rule 

learning: (pos. vs. neg. examples of Target class)

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NO

O2 23 myope no normal  YES

O3 22 myope yes reduced NO

O4 27 myope yes normal YES

O5 19 hypermetrope no reduced NO

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal YES

O15 43 hypermetrope yes reduced NO

O16 39 hypermetrope yes normal NO

O17 54 myope no reduced NO

O18 62 myope no normal NO

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NO
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Original covering algorithm

(AQ, Michalski 1969,86)

Given examples of N classes C1, …, CN

for each class Ci do

– Ei := Pi U Ni (Pi pos., Ni neg.)

– RuleBase(Ci) := empty

– repeat {learn-set-of-rules}

• learn-one-rule R covering some positive 
examples and no negatives 

• add R to RuleBase(Ci)

• delete from Pi all pos. ex. covered by R

– until Pi = empty 

++

+

+ +

+
-

-
-

-
-

+
-
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Multi-class learning: 

One-against-all learning strategy 
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Covering algorithm
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Covering algorithm
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Covering algorithm
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Learn-one-rule:

Greedy vs. beam search

• learn-one-rule by greedy general-to-specific 
search, at each step selecting the `best’ 
descendant, no backtracking
– e.g., the best descendant of the initial rule 

lenses=NONE ←

– is rule lenses=NONE ← tear production=reduced 

• beam search: maintain a list of k best candidates 
at each step; descendants (specializations) of 
each of these k candidates are generated, and 
the resulting set is again reduced to k best 
candidates
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Learn-one-rule:

Greedy vs. beam search

• learn-one-rule by greedy general-to-specific search, 
at each step selecting the `best’ descendant, no 
backtracking
e.g., best descendant of initial rule lenses=NONE ←

is rule lenses=NONE ← tear production=reduced 

e.g., best descendant of initial rule Approved=yes ←

is rule Approved=yes ← Marital status = married

• beam search: maintain a list of k best candidates at 
each step; descendants (specializations) of each of 
these k candidates are generated, and the resulting 
set is again reduced to k best candidates



123Recall: Binary classification problem -
Survey data



124Survey data: 
Classification rule learning



125Survey data: 
Classification rule pruning
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Learn-one-rule as heuristic search: 

2nd rule in Survey data example

Approved = yes ←

Approved = yes ←
Has children = no

Approved = yes ←
Has children = yes

Approved = yes ←
Sex = female

Approved = yes ←
Sex = male

Approved = yes ←
Sex = female

Has children = no

Approved = yes ←
Sex = female

Has children = yes

Approved = yes ←
Sex = female

Marital status = single

Approved = yes ←
Sex = female

Marital status=divorced

...
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Learn-one-rule as heuristic search: 

2nd rule in Survey data example

Approved = yes ←

Approved = yes ←
Has children = no

Approved = yes ←
Has children = yes

Approved = yes ←
Sex = female

Approved = yes ←
Sex = male

Approved = yes ←
Sex = female

Has children = no

Approved = yes ←
Sex = female

Has children = yes

Approved = yes ←
Sex = female

Marital status = single

Approved = yes ←
Sex = female

Marital status=divorced

[9,5] (14)

[6,2] (8)

[3,3] (6) [6,1] (7)

[3,4] (7)

...

[2,0] (2)
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What is “high” rule accuracy

(rule precision) ? 

• Rule evaluation measures: 
– aimed at maximizing classification accuracy 

– minimizing Error = 1 - Accuracy

– avoiding overfitting

• BUT: Rule accuracy/precision should be traded 
off against the “default” accuracy/precision of the 
rule Cl true

– 68% accuracy is OK if there are 20% examples of that class in 
the training set, but bad if there are 80%

• Relative accuracy (relative precision)

– RAcc(Cl Cond) = p(Cl | Cond) – p(Cl)
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Learn-one-rule:

search heuristics
• Assume two classes (+,-),  learn rules for + class (Cl). Search 

for specializations of one rule R = Cl  Cond from RuleBase.

• Expected classification accuracy:   A(R) = p(Cl|Cond)

• Informativity (info needed to specify that example covered by 
Cond belongs to Cl):  I(R) =  - log2p(Cl|Cond)

• Accuracy gain (increase in expected accuracy):

AG(R’,R) = p(Cl|Cond’) - p(Cl|Cond)

• Information gain (decrease in the information needed):

IG(R’,R) = log2p(Cl|Cond’) - log2p(Cl|Cond)

• Weighted measures favoring more general rules: WAG, WIG

WAG(R’,R) = 

p(Cond’)/p(Cond) . (p(Cl|Cond’) - p(Cl|Cond))

• Weighted relative accuracy trades off coverage and relative 

accuracy WRAcc(R) = p(Cond).(p(Cl|Cond) - p(Cl))
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Ordered set of rules:

if-then-else rules

• rule  Class IF Conditions is learned by first 
determining Conditions and then Class

• Notice: mixed sequence of classes C1, …, Cn in 
RuleBase 

• But: ordered execution when classifying a new 
instance: rules are sequentially tried and the first 
rule that `fires’ (covers the example) is used for 
classification

• Decision list {R1, R2, R3, …, D}: rules Ri are 
interpreted as if-then-else rules

• If no rule fires, then DefaultClass (majority class in

Ecur)
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Sequential covering algorithm

• RuleBase := empty 

• Ecur:= E 

• repeat 

– learn-one-rule R

– RuleBase := RuleBase U R

– Ecur := Ecur - {examples covered and correctly 
classified by R}  (DELETE ONLY POS. EX.!)

– until performance(R, Ecur) < ThresholdR 

• RuleBase := sort RuleBase by performance(R,E)

• return RuleBase
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Learn ordered set of rules

(CN2, Clark and Niblett 1989)

• RuleBase := empty 

• Ecur:= E 

• repeat 

– learn-one-rule R

– RuleBase := RuleBase U R

– Ecur := Ecur - {all examples covered by R}  
(NOT ONLY POS. EX.!)

• until performance(R, Ecur) < ThresholdR 

• RuleBase := sort RuleBase by performance(R,E)

• RuleBase := RuleBase U DefaultRule(Ecur)
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Learn-one-rule:

Beam search in CN2

• Beam search in CN2 learn-one-rule algo.:

– construct BeamSize of best rule bodies 
(conjunctive conditions) that are statistically 
significant

– BestBody - min. entropy of examples covered 
by Body 

– construct best rule R := Head  BestBody by 
adding majority class of examples covered by 
BestBody in rule Head

• performance (R, Ecur) : - Entropy(Ecur) 
– performance(R, Ecur) < ThresholdR (neg. num.)

– Why? Ent. > t is bad, Perf. = -Ent < -t is bad
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Variations

• Sequential vs. simultaneous covering of data (as 
in TDIDT): choosing between attribute-values vs. 
choosing attributes

• Learning rules vs. learning decision trees and  
converting them to rules

• Pre-pruning vs. post-pruning of rules

• What statistical evaluation functions to use

• Probabilistic classification

• Best performing rule learning algorithm: Ripper

• JRip implementation of Ripper in WEKA, available 
in ClowdFlows
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CN2 rule learner in Orange
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Probabilistic classification

• In the ordered case of standard CN2 rules are interpreted in an IF-
THEN-ELSE fashion, and the first fired rule assigns the class.

• In the unordered case all rules are tried and all rules which fire are 
collected. If a clash occurs, a probabilistic method is used to resolve the 
clash.

• A simplified example:
1. tear production=reduced => lenses=NONE [S=0,H=0,N=12] 

2. tear production=normal & astigmatism=yes & spect. pre.=hypermetrope =>
lenses=NONE  [S=0,H=1,N=2]

3. tear production=normal & astigmatism=no => lenses=SOFT 
[S=5,H=0,N=1]

4. tear production=normal & astigmatism=yes & spect. pre.=myope =>
lenses=HARD [S=0,H=3,N=2]

5. DEFAULT lenses=NONE

Suppose we want to classify a person with normal tear production and 
astigmatism. Two rules fire: rule 2 with coverage [S=0,H=1,N=2] and 
rule 4 with coverage [S=0,H=3,N=2]. The classifier computes total 
coverage as [S=0,H=4,N=4], resulting in probabilistic classification into 
class H with probability 0.5 and N with probability 0.5. In this case, the 
clash can not be resolved, as both probabilities are equal.
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Part II. Predictive DM techniques

• Decision tree learning

• Bayesian Classifier

• Rule learning

• Evaluation
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Classifier evaluation

• Accuracy and Error

• n-fold cross-validation

• Confusion matrix

• ROC
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Evaluating hypotheses

• Use of induced hypotheses

– discovery of new patterns, new knowledge

– classification of new objects

• Evaluating the quality of induced hypotheses

– Accuracy, Error = 1 - Accuracy

– classification accuracy on testing examples = 
percentage of correctly classified instances

• split the example set into training set (e.g. 70%) to 
induce a concept, and test set (e.g. 30%) to test its 
accuracy

• more elaborate strategies: 10-fold cross validation, 
leave-one-out, ...

– comprehensibility (compactness)

– information contents (information score), significance 
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n-fold cross validation

• A method for accuracy estimation of classifiers

• Partition set D into n disjoint, almost equally-sized 

folds Ti where Ui Ti = D

• for i = 1, ..., n do

– form a training set out of n-1 folds: Di = D\Ti

– induce classifier Hi from examples in Di

– use fold Ti  for testing the accuracy of Hi

• Estimate the accuracy of the classifier by 

averaging accuracies over 10 folds Ti 
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•Partition D

T1 T2 T3
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•Partition

•Train

D\T1=D1 D\T2=D2 D\T3=D3

D

T1 T2 T3
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•Partition

•Train

D\T1=D1 D\T2=D2 D\T3=D3

D

T1 T2 T3
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•Partition

•Train

•Test

D\T1=D1 D\T2=D2 D\T3=D3

D

T1 T2 T3

T1 T2 T3
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Confusion matrix and 

rule (in)accuracy

• Accuracy of a classifier is measured as TP+TN / N.

• Suppose two rules are both 80% accurate on an 
evaluation dataset, are they always equally good? 
– e.g., Rule 1 correctly classifies 40 out of 50 positives and 40 out 

of 50 negatives; Rule 2 correctly classifies 30 out of 50 
positives and 50 out of 50 negatives

– on a test set which has more negatives than positives, Rule 2 is 
preferable; 

– on a test set which has more positives than negatives, Rule 1 is 
preferable; unless…

– …the proportion of positives becomes so high that the ‘always 
positive’ predictor becomes superior!

• Conclusion: classification accuracy is not always an 
appropriate rule quality measure
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ROC space
• True positive rate = 

#true pos. / #pos.

– TPr1 = 40/50 = 80% 

– TPr2 = 30/50 = 60%

• False positive rate

= #false pos. / #neg.

– FPr1 = 10/50 = 20%

– FPr2 = 0/50 = 0%

• ROC space has 

– FPr on X axis 

– TPr on Y axis
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The ROC convex hull
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Course Outline

I. Introduction
• Data Mining and KDD process

• Introduction to Data Mining 

• Data Mining platforms

II. Predictive DM 
• Decision Tree learning

• Bayesian classifier 

• Classification rule learning

• Classifier evaluation 

III. Predictive DM

• Regression

IV. Descriptive DM
• Predictive vs. descriptive 

induction

• Subgroup discovery

• Association rule learning

• Hierarchical clustering
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III. Predictive DM – Regression

• Estimation or regression task: given objects described 

with attribute values, induce a model to predict the 

numeric class value

• Data are objects, characterized with attributes (discrete 

or continuous), classes of objects are continuous 

(numeric)

• Regression trees, linear and logistic regression, ANN, 

kNN, ...

• Regression tree learners, model tree learners: 

– M5, M5P (implemented in WEKA), Tree (in Orange)
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Estimation/regression example:

Customer data

Customer Gender Age Income Spent

c1 male 30 214000 18800

c2 female 19 139000 15100

c3 male 55 50000 12400

c4 female 48 26000 8600

c5 male 63 191000 28100

O6-O13 ... ... ... ...

c14 female 61 95000 18100

c15 male 56 44000 12000

c16 male 36 102000 13800

c17 female 57 215000 29300

c18 male 33 67000 9700

c19 female 26 95000 11000

c20 female 55 214000 28800
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Customer data: 

regression tree

Income

Age

16500

12000

 108000  108000

 42.5  42.5

26700

In the nodes one usually has 

Predicted value +- st. deviation
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Predicting algal biomass: regression 

tree

Month

Ptot

2.341.65Ptot

Si

Si
2.08 0.712.971.09

Ptot 4.322.07

0.700.341.150.21

1.281.08

Jan.-June

> 9.34  10.1 >10.1

July - Dec.

> 2.13
 2.13

 9.1 > 9.1

 9.34

 5.9 > 5.9
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Regression Classification

Data: attribute-value description

Target variable:

Continuous

Target variable:

Categorical (nominal)

Evaluation: cross validation, separate test set, …

Error:

MSE, MAE, RMSE, …

Error:

1-accuracy

Algorithms:

Linear regression, regression 

trees,…

Algorithms:

Decision trees, Naïve Bayes, …

Baseline predictor:

Mean of the target variable

Baseline predictor:

Majority class
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Example regression problem

• data about 80 people: Age and Height
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Test set
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Baseline numeric model

• Average of the target variable
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Baseline numeric predictor

• Average of the target variable is 1.63
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Linear Regression Model

Height =    0.0056 * Age + 1.4181
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Regression tree
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Model tree
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kNN – K nearest neighbors

• Looks at K closest examples (by age) and predicts the 

average of their target variable

• K=3
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Which predictor is the best?

Age Height Baseline

Linear 

regression

Regression 

tree Model tree kNN

2 0.85 1.63 1.43 1.39 1.20 1.01

10 1.4 1.63 1.47 1.46 1.47 1.51

35 1.7 1.63 1.61 1.71 1.71 1.67

70 1.6 1.63 1.81 1.71 1.75 1.81
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Course Outline

I. Introduction
• Data Mining and KDD process

• Introduction to Data Mining 

• Data Mining platforms

II. Predictive DM 
• Decision Tree learning

• Bayesian classifier 

• Classification rule learning

• Classifier evaluation 

III. Predictive DM

• Regression

IV. Descriptive DM
• Predictive vs. descriptive 

induction

• Subgroup discovery

• Association rule learning

• Hierarchical clustering
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Part IV. Descriptive DM techniques

• Predictive vs. descriptive induction

• Subgroup discovery

• Association rule learning

• Hierarchical clustering
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Descriptive DM:

Subgroup discovery example -

Customer data

Customer Gender Age Income Spent BigSpender

c1 male 30 214000 18800 yes

c2 female 19 139000 15100 yes

c3 male 55 50000 12400 no

c4 female 48 26000 8600 no

c5 male 63 191000 28100 yes

O6-O13 ... ... ... ... ...

c14 female 61 95000 18100 yes

c15 male 56 44000 12000 no

c16 male 36 102000 13800 no

c17 female 57 215000 29300 yes

c18 male 33 67000 9700 no

c19 female 26 95000 11000 no

c20 female 55 214000 28800 yes
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Customer data: 

Subgroup discovery

Type of task: description (pattern discovery)

Hypothesis language: rules X  Y, if X then Y 

X is conjunctions of items, Y is target class

Age  52 & Sex = male  BigSpender = no

Age  52 & Sex = male & Income  73250 

 BigSpender = no
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Descriptive DM:

Association rule learning example -

Customer data

Customer Gender Age Income Spent BigSpender

c1 male 30 214000 18800 yes

c2 female 19 139000 15100 yes

c3 male 55 50000 12400 no

c4 female 48 26000 8600 no

c5 male 63 191000 28100 yes

O6-O13 ... ... ... ... ...

c14 female 61 95000 18100 yes

c15 male 56 44000 12000 no

c16 male 36 102000 13800 no

c17 female 57 215000 29300 yes

c18 male 33 67000 9700 no

c19 female 26 95000 11000 no

c20 female 55 214000 28800 yes
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Customer data: 

Association rules

Type of task: description (pattern discovery)

Hypothesis language: rules X  Y, if X then Y 

X, Y conjunctions of items 

1. Age  52 & BigSpender = no  Sex = male 

2. Age  52 & BigSpender = no 

Sex = male & Income  73250

3. Sex = male & Age  52 & Income  73250 

BigSpender = no
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Descriptive DM:

Clustering and association rule learning 

example - Customer data

Customer Gender Age Income Spent BigSpender

c1 male 30 214000 18800 yes

c2 female 19 139000 15100 yes

c3 male 55 50000 12400 no

c4 female 48 26000 8600 no

c5 male 63 191000 28100 yes

O6-O13 ... ... ... ... ...

c14 female 61 95000 18100 yes

c15 male 56 44000 12000 no

c16 male 36 102000 13800 no

c17 female 57 215000 29300 yes

c18 male 33 67000 9700 no

c19 female 26 95000 11000 no

c20 female 55 214000 28800 yes
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Predictive vs. descriptive 

induction

• Predictive induction: Inducing classifiers for solving 
classification and prediction tasks, 
– Classification rule learning, Decision tree learning, ...

– Bayesian classifier, ANN, SVM, ...

– Data analysis through hypothesis generation and testing

• Descriptive induction: Discovering interesting 
regularities in the data, uncovering patterns, ... for 
solving KDD tasks
– Symbolic clustering, Association rule learning, Subgroup 

discovery, ...

– Exploratory data analysis
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Descriptive DM

• Often used for preliminary explanatory data 

analysis

• User gets feel for the data and its structure

• Aims at deriving descriptions of characteristics 

of the data

• Visualization and descriptive statistical 

techniques can be used
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Predictive vs. descriptive DM: 

Summary from a rule learning 

perspective

• Predictive DM: Induces rulesets acting as classifiers 
for solving classification and prediction tasks

• Descriptive DM: Discovers individual rules 
describing interesting regularities in the data

• Therefore: Different goals, different heuristics, 
different evaluation criteria
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Descriptive DM
• Description

– Data description and summarization: describe elementary and 

aggregated data characteristics (statistics, …)

– Dependency analysis:

• describe associations, dependencies, … 

• discovery of properties and constraints

• Segmentation

– Clustering: separate objects into subsets according to distance and/or 

similarity (clustering, SOM, visualization, ...)

– Subgroup discovery: find unusual subgroups that are significantly 

different from the majority (deviation detection w.r.t. overall class 

distribution)
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Part IV. Descriptive DM techniques

• Predictive vs. descriptive induction

• Subgroup discovery

• Association rule learning

• Hierarchical clustering
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Subgroup Discovery

• A task in which individual interpretable patterns in the 
form of rules are induced from data, labeled by a 
predefined property of interest.

• SD algorithms learn several independent rules that 
describe groups of target class examples
– subgroups must be large and significant 

1

2

3

Class YES Class NO

Person Age Spect. presc. Astigm. Tear prod. Lenses

O1 17 myope no reduced NO

O2 23 myope no normal  YES

O3 22 myope yes reduced NO

O4 27 myope yes normal YES

O5 19 hypermetrope no reduced NO

O6-O13 ... ... ... ... ...

O14 35 hypermetrope no normal YES

O15 43 hypermetrope yes reduced NO

O16 39 hypermetrope yes normal NO

O17 54 myope no reduced NO

O18 62 myope no normal NO

O19-O23 ... ... ... ... ...

O24 56 hypermetrope yes normal NO

Subgroup Discovery
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Classification versus Subgroup Discovery

• Classification (predictive induction) -

constructing sets of classification rules

– aimed at learning a model for classification or prediction

– rules are dependent

• Subgroup discovery (descriptive induction) –

constructing individual subgroup describing 

rules 

– aimed at finding interesting patterns in target class 

examples

• large subgroups (high target class coverage)

• with significantly different distribution of target class examples (high

TP/FP ratio, high significance, high WRAcc

– each rule (pattern) is an independent chunk of knowledge
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Subgroup discovery

Approved = yes ← Sex = female

Approved = yes ← Marital status = married

Approved = yes ← Marital status = divorced & Has children = no

Approved = yes ← Education = university

Selected rules discovered by Apriori-SD subgroup discovery algorithm.



Subgroup discovery in

High CHD Risk Group Detection

Input: Patient records described by anamnestic, 
laboratory and ECG attributes

Task: Find and characterize population subgroups 
with high CHD risk (large enough, distributionaly 
unusual)

From best induced descriptions, five were selected by the expert 
as most actionable for CHD risk screening (by GPs):

high-CHD-risk  male & pos. fam. history & age > 46

high-CHD-risk  female & bodymassIndex > 25 & age > 63

high-CHD-risk  ...

high-CHD-risk  ...

high-CHD-risk  ...

(Gamberger & Lavrač, JAIR 2002)
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Subgroup Discovery: Medical Use Case

• Find and characterize population subgroups with high
risk for coronary heart disease (CHD) (Gamberger, Lavrač, 
Krstačić) 

• A1 for males: principal risk factors

CHD  pos. fam. history & age > 46

• A2 for females: principal risk factors

CHD  bodyMassIndex > 25 & age >63

• A1, A2 (anamnestic info only), B1, B2 (an. and physical 
examination), C1 (an., phy. and ECG)

• A1: supporting factors (found by statistical analysis): 
psychosocial stress, as well as cigarette smoking, 
hypertension and overweight
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Subgroup visualization

The CHD task: Find, 

characterize and visualize 

population subgroups with high 

CHD risk (large enough, 

distributionally unusual, most 

actionable)



Subgroup discovery in functional 

genomics

• Functional genomics is a typical scientific discovery 
domain, studying genes and their functions

• Very large number of attributes (genes)

• Interesting subgroup describing patterns discovered 
by SD algorithm

• Interpretable by biologists 
D. Gamberger, N. Lavrač, F. Železný, J. Tolar

Journal of Biomedical Informatics 37(5):269-284, 
2004

CancerType = Leukemia

IF KIAA0128 = DIFF. EXPRESSED

AND prostoglandin d2 synthase = NOT_ DIFF. EXPRESSED
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Subgroups vs. classifiers

• Classifiers:

– Classification rules aim at pure subgroups

– A set of rules forms a domain model

• Subgroups:

– Rules describing subgroups aim at significantly higher 
proportion of positives

– Each rule is an independent chunk of knowledge

• Link 

– SD can be viewed as

cost-sensitive 

classification

– Instead of FNcost we 

aim at increased TPprofit

negativespositives

true

positives

false

pos.



185Recall: Survey data 
Classification rule learning



186Survey data 
Subgroup discovery
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Classification Rule Learning for 

Subgroup Discovery: Deficiencies

• Only first few rules induced by the covering 

algorithm have sufficient support (coverage)

• Subsequent rules are induced from smaller and 

strongly biased example subsets (pos. examples 

not covered by previously induced rules), which 

hinders their ability to detect population 

subgroups 

• ‘Ordered’ rules are induced and interpreted 

sequentially as a if-then-else decision list 
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CN2-SD: Adapting CN2 Rule 

Learning to Subgroup Discovery

• Weighted covering algorithm

• Weighted relative accuracy (WRAcc) search 

heuristics, with added example weights

• Probabilistic classification

• Evaluation with different interestingness 

measures



189

CN2-SD: CN2 Adaptations

• General-to-specific search  (beam search) for best rules 

• Rule quality measure: 

– CN2: Laplace: Acc(Class  Cond) = 

= p(Class|Cond) = (nc+1)/(nrule+k)

– CN2-SD: Weighted Relative Accuracy

WRAcc(Class  Cond) = 

p(Cond) (p(Class|Cond) - p(Class)) 

• Weighted covering approach (example weights)

• Significance testing (likelihood ratio statistics)

• Output: Unordered rule sets (probabilistic classification)
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CN2-SD: Weighted Covering 

• Standard covering approach: 

covered examples are deleted from current training set

• Weighted covering approach:

– weights assigned to examples 

– covered pos. examples are re-weighted: 

in all covering loop iterations, store 

count i how many times (with how many 

rules induced so far) a pos. example has 

been covered: w(e,i), w(e,0)=1

• Additive weights:  w(e,i) = 1/(i+1)

w(e,i) – pos. example e being covered i times
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Subgroup Discovery
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Subgroup Discovery
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Subgroup Discovery 
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Subgroup Discovery 
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CN2-SD: Weighted WRAcc Search 

Heuristic
• Weighted relative accuracy (WRAcc) search 

heuristics, with added example weights 
WRAcc(Cl  Cond) = p(Cond) (p(Cl|Cond) - p(Cl))

increased coverage, decreased # of rules, approx. equal 
accuracy (PKDD-2000)

• In WRAcc computation, probabilities are estimated 
with relative frequencies, adapt:
WRAcc(Cl  Cond) = p(Cond) (p(Cl|Cond) - p(Cl)) = 

n’(Cond)/N’ ( n’(Cl.Cond)/n’(Cond) - n’(Cl)/N’ )
– N’ : sum of weights of examples

– n’(Cond) : sum of weights of all covered examples

– n’(Cl.Cond) : sum of weights of all correctly covered examples



SD algorithms in the Orange DM 

Platform
• Orange data mining toolkit

– classification and subgroup 

discovery algorithms 

– data mining workflows

– visualization 

SD Algorithms in Orange
SD (Gamberger & Lavrač, JAIR 2002)

Apriori-SD (Kavšek & Lavrač, AAI 2006)

CN2-SD (Lavrač et al., JMLR 2004): Adapting CN2  

classification rule learner to Subgroup Discovery
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Part IV. Descriptive DM techniques

• Predictive vs. descriptive induction

• Subgroup discovery

• Association rule learning

• Hierarchical clustering
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Association Rule Learning

Rules: X =>Y,  if X then Y

X and Y are itemsets (records, conjunction of items), 

where items/features are binary-valued attributes)

Given: Transactions i1     i2  ………………… i50

itemsets (records) t1     1      1                 0 

t2     0      1             0

…    … ………………...  …

Find: A set of association rules in the form X =>Y

Example: Market basket analysis

beer & coke => peanuts & chips (0.05, 0.65)

• Support:  Sup(X,Y) = #XY/#D = p(XY)

• Confidence: Conf(X,Y) = #XY/#X = Sup(X,Y)/Sup(X) =

= p(XY)/p(X) = p(Y|X)
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Association Rule Learning: 

Examples

• Market basket analysis

– beer & coke  peanuts & chips  (5%, 65%)                   

(IF beer AND coke THEN peanuts AND chips)

– Support 5%: 5% of all customers buy all four items

– Confidence 65%: 65% of customers that buy beer 

and coke also buy peanuts and chips

• Insurance

– mortgage & loans & savings  insurance (2%, 

62%)

– Support 2%: 2% of all customers have all four 

– Confidence 62%: 62% of all customers that have 

mortgage, loan and savings also have insurance



200Recall: Survey data 
Classification rule learning



201Survey data 
association rule learning 
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Association Rule Learning

Given: a set of transactions D

Find: all association rules that hold on the set of transactions 

that have 

– user defined minimum support, i.e., support > MinSup, and 

– user defined minimum confidence, i.e., confidence > MinConf

It is a form of exploratory data analysis, rather than hypothesis 

verification
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Searching for the associations

• Find all large itemsets

• Use the large itemsets to generate 

association rules

• If XY is a large itemset, compute 

r =support(XY) / support(X)

• If r > MinConf, then X  Y holds 

(support > MinSup, as XY is large)
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Large itemsets

• Large itemsets are itemsets that appear in at 

least MinSup transaction

• All subsets of a large itemset are large 

itemsets (e.g., if A,B appears in at least 

MinSup transactions, so do A and B)

• This observation is the basis for very efficient 

algorithms for association rules discovery 

(linear in the number of transactions)
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Association  vs.  Classification

rules             rules

• Exploration of 

dependencies

• Different combinations 

of dependent and 

independent attributes

• Complete search (all 

rules found)

• Focused prediction

• Predict one attribute 

(class) from the others

• Heuristic search (subset 

of rules found)
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Part IV. Descriptive DM techniques

• Predictive vs. descriptive induction

• Subgroup discovery

• Association rule learning

• Hierarchical clustering
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Hierarchical clustering

• Algorithm (agglomerative 

hierarchical clustering):

Each instance is a cluster;

repeat
find nearest pair Ci in Cj;

fuse Ci in Cj in a new cluster

Cr = Ci U Cj;

determine dissimilarities between

Cr and other clusters;

until one cluster left;

• Dendogram:



208

Hierarchical clustering

• Fusing the nearest pair of clusters

iC

jC

kC),( ji CCd

),( ki CCd

),( kj CCd

• Minimizing intra-cluster 

similarity

• Maximizing inter-cluster 

similarity

• Computing the dissimilarities   

from the “new” cluster
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Hierarchical clustering: example
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Results of clustering

A dendogram of 

resistance vectors

[Bohanec et al., “PTAH: 

A system for supporting 

nosocomial infection 

therapy”, IDAMAP 

book, 1997]
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Course Outline

I. Introduction
• Data Mining and KDD process

• Introduction to Data Mining 

• Data Mining platforms

II. Predictive DM 
• Decision Tree learning

• Bayesian classifier 

• Classification rule learning

• Classifier evaluation 

III. Predictive DM

• Regression

IV. Descriptive DM
• Predictive vs. descriptive 

induction

• Subgroup discovery

• Association rule learning

• Hierarchical clustering


